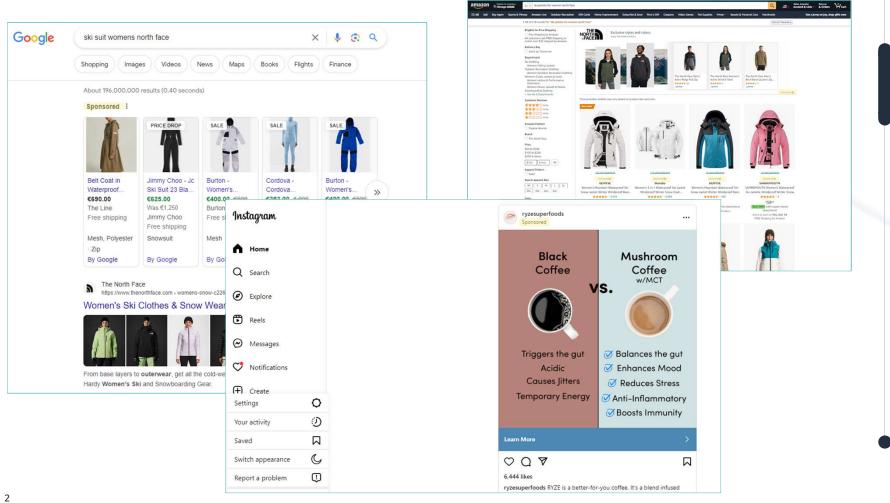
Advancing Ad Auction Realism: Practical Insights and Modeling Implications

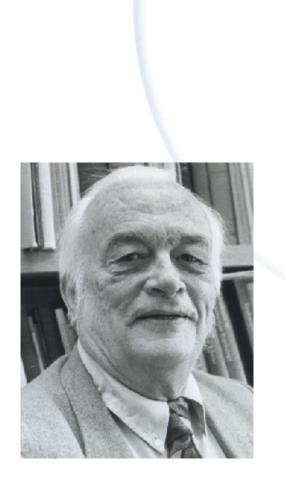
Ming Chen (Outreach Inc) Sareh Nabi (Amazon Ads) Marciano Siniscalchi (Amazon Ads & Northwestern U)

amazon ads

Ad Auctions



• Second-price auction



• Second-price auction

4

• Generalized – click-through rate (CTR)

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalties

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalty
- Hard floor

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalty
- Hard floor
- Soft floor

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalties
- Hard floor
- Soft floor

8

• Limited feedback to guide bidding

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalty
- Hard floor
- Soft floor

- Limited feedback to guide bidding
- Targeting clauses

- Second-price auction
- Generalized click-through rate (CTR)
- Irrelevance Penalty
- Hard floor
- Soft floor
- Limited feedback to guide bidding
- Targeting clauses
- ...

Standard equilibrium analysis is not feasible

The Auction Simulator

• Objective:

Build a flexible tool to simulate the strategic behavior of advertisers in complex ad auctions

Requirements:	Flexible	Allow arbitrary ranking and pricing rules, heterogeneous bidders, multiple ad slots
	Strategic	Focus on how the interaction among bidders determines prices, allocations, predicted clicks / conversions
	Complex Auctions	This is not Auctions 101 anymore bids target multiple queries, compete in multiple auctions, with different competitors, and only aggregate feedback

Model: High-level view

- Inputs:
 - Distribution *F_i* of bidders' "types," i.e.:
 - willingness to pay (per click) v_i
 - Click-through rates c_i
 - **Pricing rule** *P*(*b*₁, ..., *b*_{*N*}; ...)
 - Possible shopper queries
- Simulation:
 - Draw bids b_i (and targeting clauses later)
 - Compute price $p = P(b_1, ..., b_N; ...)$
 - Observe rewards: 0 or $c_i(v_i p_i)$
 - Update bid probabilities
- Outputs:
 - Bid Distribution
 - KPIs: revenues, cost per click, conversion rates...
- A collection of principled learning algorithms
 - Game Theory: Stochastic Fictitious Play
 - Online / Reinforcement Learning: Hedge, EXP3IX...

Application: Exploring Soft Floors

Zeithammer (2019): BNE analysis, partial results

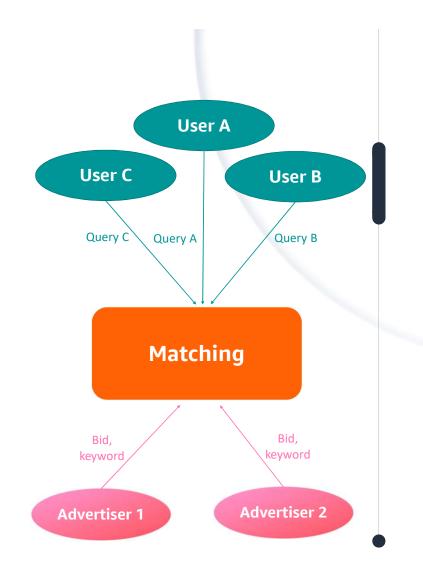
- with symmetric bidders, soft floors ineffective
 - Equilibrium + continuum of bids/values: Revenue Equivalence
- with asymmetric bidders, some special cases:
 - stochastically stronger bidders: soft floors can lift revenues for some param values
 - deterministically stronger bidders (e.g., major brand):
 - low soft floors do not lift, can depress revenues
 - intermediate / high soft floors: unknown effect

Soft floors: Keywords and Queries

Injecting realism, one complication at a time

- Advertisers bid on keywords (i.e., targeting clauses)
- User queries are matched to relevant keywords
- Ex: keyword shower curtain may match with
 - snap on shower curtain with liner
 - blue shower curtains for bathrooms
 - vw van shower curtain for bathroom
 - shower curtain liner mold
- These have different estimated CTRs
- And presumably different values to the bidder

Our model: targeting clause = set of queries to match



Soft Floors: A New Rationale

• Let N = 3, equally likely queries, values and CTRs as follows

F (.)	$v_{i,1}$	<i>c_{i,1}</i>	$v_{i,2}$	<i>c</i> _{<i>i</i>,2}
1/3	0.5	0.3	0.25	0.1
1/3	0.25	0.1	1	0.1
1/3	0.25	0.1	1	0.2

Soft Floors: A New Rationale?

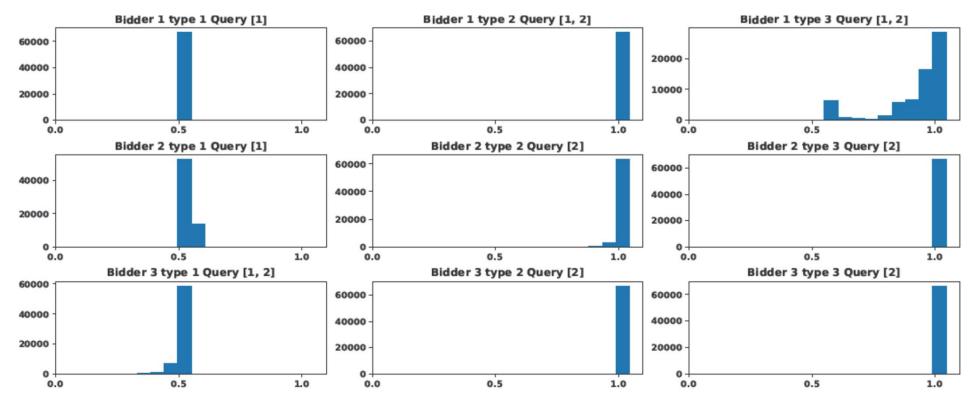
Revenue Equivalence does not hold Different algorithms give different answers

Format	Revenues – Hedge	Revenues – EXP3IX
2 nd Price	0.0857 (0.0001)	0.0509 (0.0007)
1 st Price	0.0691 (0.0016)	0.0830 (0.0008)
2 nd Price w/50c soft floor	0.0741 (0.0061)	0.0813 (0.0007)

- Bids: [0,1], step size 0.05
- Learning periods T = 500,000 (Hedge) or T = 1M (EXP3IX)
- 5 runs per experiment (stdevs in parens)
- No revenue equivalence: soft floors may beat 2nd-price
- Different implications of learning algorithms (more later...)
- Note: did not optimize "standard" reserve prices ("hard floors")

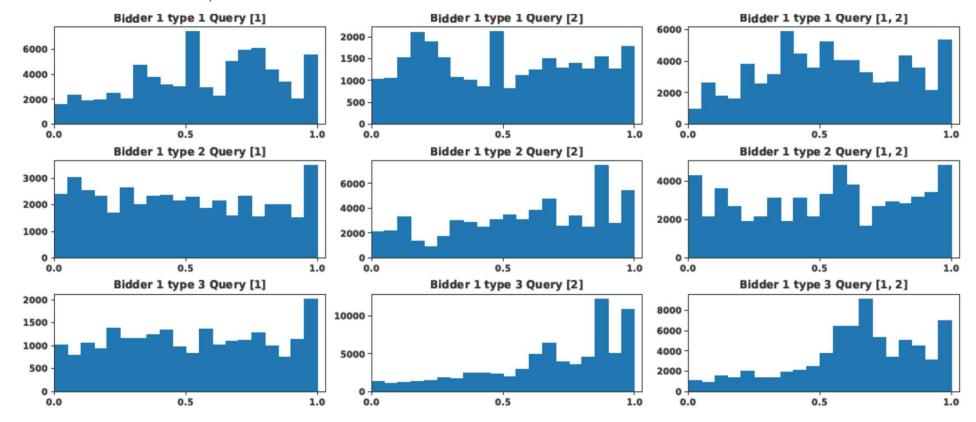
Application: Hedge vs. EXP3IX

Second-Price Auction, Hedge



Application: Hedge vs. EXP3IX

Second-Price Auction, EXP3IX



Key takeaways

- The choice of algorithm matters
- Bandit (e.g EXP3IX) algorithms learn *way* more slowly
 - in realistic settings
- Yet they are more principled: better fit with observational reality
- Hedge as compromise?

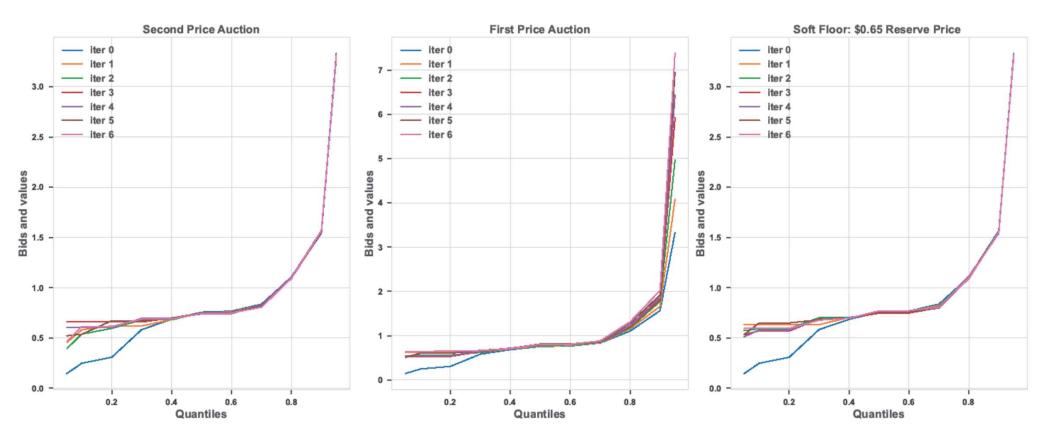
Application: Inferring Values from Bids

- Scenario: observe aggregate bid distribution
- Want to infer advertisers' values (willingness to pay)
- (At this level, can (only) take CTRs to be the same for all)
- With standard auction formats:
 - Second-price: bids = values
 - First price: invert equilibrium bids (Guerre, Perrigne, Vuong, 2000)
- But what about real-world auctions?
 - Cannot solve for equilibrium!
- We propose to: simulate and iterate

Low-traffic keyword

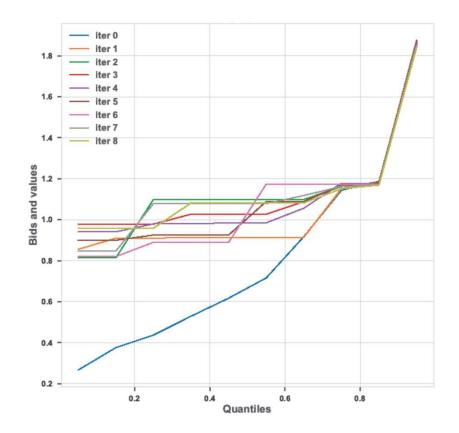
5 iterations

Assuming different pricing rules



High-traffic keyword

8 iterations, T=800,000 Assuming "realistic" pricing rule



Conclusions

- Simulate Advertisers' Strategic Behavior
- Principled learning algorithms
- Can be used to
 - Perform "what if" analysis
 - Infer advertisers' willingness to pay
 - And more!

Questions?

Thank you

Appendix

The Model – single query

(Multiple queries: later)

- Bidding to show an ad for a given shopper query in a given slot
- Bidder *i* characterized by value per click $v_i \in [0, \overline{V}]$, CTR $c_i \in [0, 1]$
 - (v_i, c_i) is *i*'s type
 - Drawn according to cdf *F_i*
- "Cost per click:" winner is charged only if the ad is clicked
- Hence expected payoff for winner *i*, given charged price *p*, is

 $c_i \cdot (v_i - p)$

Generalized Second-Price Auction

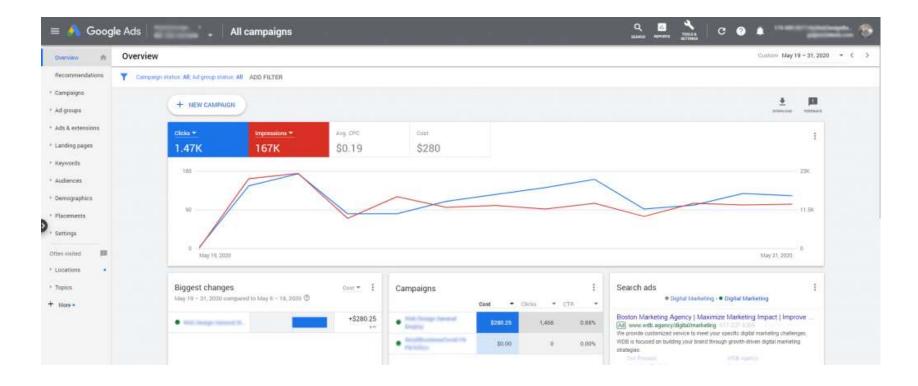
- Given bids b_1, \ldots, b_N and CTRs c_1, \ldots, c_N :
 - Compute ranking scores $r_i = c_i \cdot b_i$
 - Winner is *i* with highest ranking score: $i \in \operatorname{argmax}_k r_k$
 - Runner-up is j with second-highest score: $j \in \operatorname{argmax}_{k \neq i} r_k$
 - Price per click is "performance-adjusted":

$$p = \frac{r_j}{c_i}$$

- Intuition: minimum b_i such that i still wins (Vickrey, Myerson)
- In practice, add "floors," "irrelevance penalty"...

What advertisers really see

Bids compete in many auctions ("campaign") Feedback aggregated over all auctions



Learning: Experts/Bandits Approach

e.g. Freund-Schapire (1999); Auer, Cesa-Bianchi, Freund, Schapire (1995); Kocák et al. (2014); Lattimore and Szepesvári (2020)

- *T* periods: at each *t*,
 - Fresh draw of (v_i, c_i)
 - Auction is run, payoffs accrue
- Bidders only observe their own rewards
 - "experts" approach (e.g., Hedge): learn payoff of all bids
 - "bandits" approach (e.g. EXP3IX): learn payoff of bid actually played
- At each t, play bid w/ highest cumulative reward so far, with perturbation
- Not strategically or statistically sophisticated
 - Generic: need not know auction rules, own WTP/CTR!
 - Good fit for online ad auctions
- Finite-sample regret guarantee vs. best action in hindsight

Results: Soft-Floor Reserve Pricing

- (For simplicity, set all CTRs to a constant, e.g., 1)
- Idea: "price support" / "insurance"
 - "the goal is to 'harvest' higher bids while not compromising on lower bid opportunities" (Weatherman 2013).
- Fix a soft floor $s \in [0, \overline{V}]$
- Let b_i be the highest bid, b_i the runner-up
- Then price *p* is as follows:
 - If $b_i \ge s$, then second-price rule: $p = b_i$
 - If $b_i \ge s > b_j$, then s acts as floor: p = s
 - If $s > b_i$, then first-price: $p = b_i$

The Model – multiple queries

- *Q* possible queries
- In each period, probability over queries G
- Bidder *i*'s values and CTRs depend on the query: $v_{i,q}$, $c_{i,q}$
- So now cdf F_i on tuples $(v_{i,1}, c_{i,1}, \dots, v_{i,Q}, c_{i,Q})$
- Each bidder now chooses
 - A bid b_i
 - A keyword, identified with the queries that it matches: $K_i \subset \{1, ..., Q\}$
- Key restriction: same bid b_i for all queries in K_i
- Expected payoff for winner i, given prices per query p_q

$$\sum_{q \in K_i} G(q) \cdot 1_{i \text{ wins } q} \cdot c_{i,q}(v_{i,q} - p_q)$$

Inferring Values

- E-commerce website
- Two queries: low traffic, high traffic
- Approach:
 - 1. To initialize, assume values equal observed bids: $v = b^o$
 - 2. Run Auction Simulator, compute predicted bids b^p for every value v
 - 3. Adjust values:
 - 1. Compute predicted bid shading: $\sigma = \frac{b^p}{v}$
 - 2. Infer value: $v \leftarrow v + \alpha \left(\frac{b^o}{\sigma} v\right)$ plus "flattening" for monotonicity
 - 4. Go to 2 until termination
- Each iteration: run 3x, T = 500,000 learning periods,