Scaling Generative Pre-training for User Ad Activity Sequences

Sharad Chitlangia, Krishna Reddy Kesari & Rajat Agarwal
{chitshar, kkesari, agrajat}@amazon.com

AdKDD 2023
User Activity Sequence Models in Advertising

- **Why model user activity sequences?**
 - Information about temporal user behavioral patterns
 - Fine grained information as against feature aggregates
 - Lower reliance on feature engineering

- **Applications**
 - Customized ad response prediction
 - Personalization
 - Ad Fraud / Bot detection

- **Training Technique**
 - Deep sequence model as the backbone – LSTM, Transformer etc.
 - Ad response prediction uses supervised models
 - Labels are abundant
 - Fraud detection – large scale ground truth is unavailable
 - Unsupervised techniques / pre-training typically work better
Pre-training using Generative Models

Introduction

- Goal is to learn the input data distribution $P(X)$

- Pre-train a large neural network on large-scale unlabeled data using a proxy task

- Proxy tasks on sequential data:
 - Masked Token Prediction (BERT)
 - Next Token Prediction (GPT)

- Generates robust task-agnostic embeddings of the input
 - Improves performance on both supervised and unsupervised downstream tasks
Generative Pre-training

Formulation for User Ad Activity Sequences

- **Training Objective:** Predict the next event in users’ activity sequence \((X_1, \ldots, X_n)\) using a neural network

\[
L(S) = \sum_u \sum_i \log p(X_{i+1}|X_1, \ldots, X_i; \theta)
\]

- Each activity event \(X_i\) is defined using multiple \((k)\) features \((F)\). Assuming conditional independence:

\[
p(X_{i+1}|X_1, \ldots, X_i) = \prod_{j=1}^{k} p(F_{j}(i+1)|X_1, \ldots, X_i)
\]

- For low cardinality features – compute the exact probability using softmax
- For high cardinality features – approximate the probability using negative sampling and contrastive loss
- Use any off-the-shelf deep sequence model for encoding the sequence
 - Transformers scale better
Scaling Properties

What do we mean by scaling of Generative Pre-training?

- How does model performance improve with increasing
 - Model size (Trainable non-embedding parameters)
 - Data size
 - Compute (GPU-hours or FLOPS)
- Performance is measured by test loss on the pre-training objective
- Also evaluated on downstream task performance
Scaling Properties – Model Size

How does increasing number of trainable parameters in the model impact test loss?

• Considers only non-embedding parameters
• Trains on all available data (number of users in the ad program)
• Test loss follows a power law relationship with parameter count
• Can extrapolate to predict the performance of a larger model
• Will eventually saturate at some point due to bounded dataset size
Scaling Properties – Data Size

How does dataset size impact test loss for different model sizes?

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss
Scaling Properties – Data Size

How does dataset size impact test loss for different model sizes?

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss

- Smaller models benefit more from increasing dataset than larger models
Scaling Properties – Data Size

How does dataset size impact test loss for different model sizes?

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss

- Smaller models benefit more from increasing dataset than larger models

- For a fixed model size – increasing data size gives diminishing returns
Scaling Properties – Data Size

How does dataset size impact test loss for different model sizes?

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss

- Smaller models benefit more from increasing dataset than larger models

- For a fixed model size – increasing data size gives diminishing returns

- **Takeaway**: Increase model size and data size in tandem to maximize performance

- **In practice**: Dataset is bounded. Train the largest model given your compute budget.
Scaling Properties – Compute

How to achieve the lowest test loss given fixed compute budget (GPU-hours)

- Fix GPU hours (monetary cost):
 - Tradeoff number of serial gradient update steps vs model size vs batch size
 - GPU utilization is maximized for every model by changing batch size

- Larger models are more sample efficient in achieving a fixed test loss
 - For each compute configuration (fixed number of GPUs and wall clock time) larger models process less data

- For a fixed model size, increasing gradient steps is more efficient than increasing batch size

- **Theme:** Increase model size, decrease batch size, increase serial steps

<table>
<thead>
<tr>
<th>Configuration</th>
<th>GPUs</th>
<th>Time (minutes)</th>
<th>Learning rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>15</td>
<td>0.0008</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>30</td>
<td>0.0004</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>60</td>
<td>0.0002</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>120</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

For fixed model size, higher gradient steps, lower batch size
Scaling Properties – Compute

How much can we decrease batch size and increase model size, given fixed compute budget? (GPU-hours)

- Lower batch size leads to noisier gradients
 - Larger model with batch size \(< B_{\text{min}} \) will underperform smaller model
- Scale model size keeping with batch size \(B_{\text{min}} \)
- But increasing model size decreases serial steps
 - Need minimum wall clock time \((W_{\text{min}}) \) before larger model outperforms all smaller models

- **Takeaway:** Increase model size till the extent both \(B_{\text{min}} \) and \(W_{\text{min}} \) fit your compute budget
Downstream Task Evaluation

Does improvement in pre-training test loss translate to better downstream task performance?

- Evaluated on two downstream tasks in advertising
 - **Supervised** – Conversion Prediction
 - **Unsupervised** - Bot detection

- Lower test loss (larger model) leads to improved downstream performance on both tasks

- Larger models were significantly better in detecting bots with shorter sequence lengths
 - Points to better representation learning on limited data with increasing model size

Table 5: Lift over downstream task performance relative to 54K model

<table>
<thead>
<tr>
<th>Params</th>
<th>IVR @ fixed FPR</th>
<th>pConversion AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,186,432</td>
<td>+1.63 %</td>
<td>+0.02 %</td>
</tr>
<tr>
<td>6,359,552</td>
<td>+3.44 %</td>
<td>+2.51 %</td>
</tr>
<tr>
<td>85,136,640</td>
<td>+4.09 %</td>
<td>+3.57 %</td>
</tr>
</tbody>
</table>
Learnings

Putting it all together

- Pre-training test loss follows power law scaling with increasing model size
- Larger models are more data and compute efficient
- Downstream task performance doesn’t follow power law with model size
 - Cannot exactly predict final downstream performance but it will likely improve
- Dataset size is bounded in ads, but it’s not a key constraint at current model sizes
 - Even with 1% data, the test loss did not saturate
- Compute efficient training requires scaling model size at a fixed minimum batch size
 - But give it a minimum wall clock time to see the benefits
 - Efficient training need not converge – aim for the lowest test loss given your budget
Thank you!

Questions?
agrajat@amazon.com