Scaling Generative Pre-training for User Ad Activity Sequences

Sharad Chitlangia, Krishna Reddy Kesari & Rajat Agarwal

{chitshar, kkesari, agrajat}@amazon.com

AdKDD 2023

User Activity Sequence Models in Advertising

• Why model user activity sequences?

- Information about temporal user behavioral patterns
- Fine grained information as against feature aggregates
- Lower reliance on feature engineering

• Applications

- Customized ad response prediction
- Personalization
- Ad Fraud / Bot detection

• Training Technique

- Deep sequence model as the backbone LSTM, Transformer etc.
- Ad response prediction uses supervised models
 - Labels are abundant
- Fraud detection large scale ground truth is unavailable
 - Unsupervised techniques / pre-training typically work better

Pre-training using Generative Models

Introduction

- Goal is to learn the input data distribution P(X)
- Pre-train a large neural network on large-scale unlabeled data using a proxy task
- Proxy tasks on sequential data:
 - Masked Token Prediction (BERT)
 - Next Token Prediction (GPT)
- Generates robust task-agnostic embeddings of the input
 - Improves performance on both supervised and unsupervised downstream tasks

Generative Pre-training

Formulation for User Ad Activity Sequences

• **Training Objective:** Predict the next event in users' activity sequence (X₁... X_n) using a neural network

$$L(S) = \sum_{u} \sum_{i} \log p(X_{i+1}|X_{1}, ..., X_{i}; \theta)$$

• Each activity event X_i is defined using multiple (k) features (F). Assuming conditional independence:

$$p(X_{i+1}|X_1,..,X_i) = \prod_{j=1}^k p(F_j(i+1)|X_1,..,X_i)$$

- For low cardinality features compute the exact probability using softmax
- For high cardinality features approximate the probability using negative sampling and contrastive loss
- Use any off-the-shelf deep sequence model for encoding the sequence
 - Transformers scale better

Scaling Properties

What do we mean by scaling of Generative Pre-training?

- How does model performance improve with increasing
 - Model size (Trainable non-embedding parameters)
 - Data size
 - Compute (GPU-hours or FLOPS)
- Performance is measured by test loss on the pre-training objective
- Also evaluated on downstream task performance

Scaling Properties – Model Size

How does increasing number of trainable parameters in the model impact test loss?

- Considers only non-embedding parameters
- Trains on all available data (number of users in the ad program)
- Test loss follows a power law relationship with parameter count
- Can extrapolate to predict the performance of a larger model
- Will eventually saturate at some point due to bounded dataset size

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss
- Smaller models benefit more from increasing dataset than larger models

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss
- Smaller models benefit more from increasing dataset than larger models
- For a fixed model size increasing data size gives diminishing returns

- Larger models are more data efficient:
 - Need lesser data to achieve a target test loss
- Smaller models benefit more from increasing dataset than larger models
- For a fixed model size increasing data size gives diminishing returns

- **Takeaway**: Increase model size and data size in tandem to <u>maximize</u> performance
- In practice: Dataset is bounded. Train the largest model given your compute budget.

Scaling Properties – Compute

How to achieve the lowest test loss given fixed compute budget (GPU-hours)

- Fix GPU hours (monetary cost):
 - Tradeoff number of serial gradient update steps vs model size vs batch size
 - GPU utilization is maximized for every model by changing batch size
- Larger models are more sample efficient in achieving a fixed test loss
 - For each compute configuration (fixed number of GPUs and wall clock time) larger models process lesser data
- For a fixed model size, increasing gradient steps is more efficient than increasing batch size
- Theme: Increase model size, decrease batch size, increase serial steps

For fixed model size	Configuration	GPUs	Time (minutes)	Learning rate
higher gradient steps,	1	64	15	0.0008
lower batch size	2	32	30	0.0004
	3	16	60	0.0002
	4	8	120	0.0001

Scaling Properties – Compute

How much can we decrease batch size and increase model size, given fixed compute budget? (GPU-hours)

Parameters	GPUs	Time (minutes)	Batch size (per GPU)	Test loss
201,649,152	8	120	48	7.732
85,136,640	8	120	128	7.601
25,273,856	8	120	256	7.554
410,240	8	120	960	7.677

- Lower batch size leads to noisier gradients
 - Larger model with batch size < B_{min} will underperform smaller model
- Scale model size keeping with batch size **B**_{min}
- But increasing model size decreases serial steps
 - Need minimum wall clock time (**W**_{min}) before larger model outperforms all smaller models

Takeaway: Increase model size till the extent both B_{min} and W_{min} fit your compute budget

Parameters	GPUs	Time (minutes)	Batch size (global)	Test loss
25,273,856	32	30	8192	7.623
410,240	8	120	7680	7.677

Downstream Task Evaluation

Does improvement in pre-training test loss translate to better downstream task performance?

- Evaluated on two downstream tasks in advertising
 - Supervised Conversion Prediction
 - Unsupervised Bot detection
- Lower test loss (larger model) leads to improved downstream performance on both tasks
- Larger models were significantly better in detecting bots with shorter sequence lengths
 - Points to better representation learning on limited data with increasing model size

Table 5: Lift over downstream task performance relative to54K model

Params	IVR @ fixed FPR	pConversion AUC
3,186,432	+1.63 %	+0.02 %
6,359,552	+3.44 %	+2.51 %
85,136,640	+4.09 %	+3.57 %

Putting it all together

- Pre-training test loss follows power law scaling with increasing model size
- Larger models are more data and compute efficient
- Downstream task performance doesn't follow power law with model size
 - Cannot exactly predict final downstream performance but it will likely improve
- Dataset size is bounded in ads, but it's not a key constraint at current model sizes
 - Even with 1% data, the test loss did not saturate
- Compute efficient training requires scaling model size at a fixed minimum batch size
 - But give it a minimum wall clock time to see the benefits
 - Efficient training need not converge aim for the lowest test loss given your budget

Thank you!

Questions? agrajat@amazon.com

