
Optimizing hierarchical queries for the 
attribution reporting API

Matthew Dawson, Badih Ghazi, Pritish Kamath, Kapil Kumar, Ravi Kumar, Bo Luan, 
Pasin Manurangsi, Nishanth Mundru, Harikesh Nair, Adam Sealfon, Shengyu Zhu

Google



The Attribution Reporting API

● Privacy-preserving tool for ad conversion measurement on Chrome/Android
● Can produce aggregate statistics about conversion attribution without using 

persistent cross-site identifiers
● Summary reports satisfy differential privacy: noise is added to limit how much 

can be inferred about individual impressions



Conversion reporting

● Goal: estimate the number of conversions attributed to impressions, where 
the impressions and conversions have a certain combination of features

● E.g. how many conversions were attributed to impressions from campaign 
123 and took place in Los Angeles last Friday?

Los Angeles



Hierarchical queries

● For each (city, day) of the campaign, how many attributed conversions?
● Higher-level aggregates: what is the total number of attributed conversions for 

this campaign? What about the total number in Los Angeles?
● Goal: given a tree that branches on impression/conversion features, want to 

estimate the number of conversions corresponding to each node in the tree.

Error metric: thresholded RMS relative 
error averaged over the levels of the tree 
(same algorithms work with other metrics)



Differential privacy (DP) and the Laplace mechanism

● DP provides worst-case guarantees about how much an adversary can infer 
about a single row of the dataset

● Privacy level is controlled by a parameter ε > 0; smaller ε ⇔ more private
● For a counting query, can satisfy ε-DP by adding noise of scale 1/ε from a 

(continuous or discrete) Laplace distribution.
● Such estimates can be obtained using the Attribution Reporting API



Privacy budgeting and hierarchical queries 

● What if multiple queries involve the same data record?
● Composition: Algorithms A1, A2 are ε1-DP and ε2-DP ⇒ (A1,A2) is (ε1+ε2)-DP
● In a tree:

○ Queries to different nodes at the same level touch disjoint subsets of the data
○ Queries to nodes at different levels may touch the same data record

● Given a total privacy budget ε, can allocate it to the d+1 levels of the tree so 
that ε0 + ε1 + ⋯ + εd = ε



Main question

How can we obtain estimates for hierarchical queries that are consistent and have 
minimum possible error?

Two main results:

● A post-processing algorithm that reduces the error of estimates and ensures 
consistency with the hierarchical structure

● A procedure for optimizing the allocation of the privacy budget among the 
levels of the hierarchy



Post-processing algorithm

● Observation: the value of any internal node should equal the sum of the 
values of its children (consistency).

● Given independent estimates e1, e2 of the same quantity with variances v1, v2:
○ Can obtain other unbiased estimates by taking a convex combination α e1 + (1- α) e2
○ The optimal combination has α = v2 / (v1 + v2), yielding an improved variance of v1v2/(v1+v2)

● How can we optimally take into account all constraints encoded in the tree?



Post-processing algorithm

Given: estimates zv of the count at each node v, and their variances varv

Bottom-up pass. For each internal node v from largest to smallest depth:

Update zv to be the minimum-variance convex combination of zv and ∑u∈child(v)zu, 
and compute the corresponding variance varv.

Top-down pass. For each internal node v from smallest to largest depth:

Update zu for each u ∈ child(v) by splitting the discrepancy zv - ∑u∈child(v)zu among 
the children proportionally to the variance varu of each child estimate.

Output the final estimates zu



Post-processing algorithm

● Optimal: computes best linear unbiased estimator
● Better privacy/accuracy tradeoff: given noisy estimates for each tree node, 

produces estimates with lower error, without any additional privacy leakage
● Produces consistent estimates
● Linear-time algorithm
● Can be extended to compute variances as well as estimates
● Extends the methods of [Hay et al., VLDB’10, Cormode et al., ICDE’12], which 

apply to regular trees; also related to the matrix mechanism of [Li et al., VLDB 
’15, Nikolov et al., STOC’13], which in general requires ≥ quadratic time (nω).



Allocating the privacy budget

● Post-processing tells us the optimal way to use a set of measurements, but 
which measurements should we take?

● For total budget ε, can split it in many ways among the levels of the tree
● Given (noisy) historical data or a prior, can compare these options
● Optimize to choose the best privacy budget split
● Simple greedy approach:

○ Divide total budget into k increments
○ In each iteration, allocate ε/k additional budget to the level that most decreases the overall 

error after post-processing



Evaluation

● Evaluated on two public Criteo datasets, Sponsored Search Conversion Log 
(CSSCL) and Attribute Modeling for Bidding (CAMB)

● Selected attributes from each dataset to construct hierarchy
● Split datasets into budgeting data and test data based on click time
● Compared five approaches: 

○ equal budget split, with and without post-processing
○ all budget on bottom level, with post-processing
○ optimizing per-level privacy budgets, with and without post-processing



Evaluation

Five-attribute hierarchy using Criteo Sponsored Search 
Conversion Log (CSSCL) dataset, τ = 10

Four-attribute hierarchy using Criteo Attribution 
Modeling for Bidding (CAMB) dataset, τ = 10



Evaluation

Four-attribute hierarchy using Criteo Sponsored Search 
Conversion Log (CSSCL) dataset, τ = 10

Three-attribute hierarchy using Criteo Attribution 
Modeling for Bidding (CAMB) dataset, τ = 10


