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The Attribution Reporting API

● Privacy-preserving tool for ad conversion measurement on Chrome/Android
● Can produce aggregate statistics about conversion attribution without using 

persistent cross-site identifiers
● Summary reports satisfy differential privacy: noise is added to limit how much 

can be inferred about individual impressions



Conversion reporting

● Goal: estimate the number of conversions attributed to impressions, where 
the impressions and conversions have a certain combination of features

● E.g. how many conversions were attributed to impressions from campaign 
123 and took place in Los Angeles last Friday?

Los Angeles



Hierarchical queries

● For each (city, day) of the campaign, how many attributed conversions?
● Higher-level aggregates: what is the total number of attributed conversions for 

this campaign? What about the total number in Los Angeles?
● Goal: given a tree that branches on impression/conversion features, want to 

estimate the number of conversions corresponding to each node in the tree.

Error metric: thresholded RMS relative 
error averaged over the levels of the tree 
(same algorithms work with other metrics)



Differential privacy (DP) and the Laplace mechanism

● DP provides worst-case guarantees about how much an adversary can infer 
about a single row of the dataset

● Privacy level is controlled by a parameter ε > 0; smaller ε ⇔ more private
● For a counting query, can satisfy ε-DP by adding noise of scale 1/ε from a 

(continuous or discrete) Laplace distribution.
● Such estimates can be obtained using the Attribution Reporting API



Privacy budgeting and hierarchical queries 

● What if multiple queries involve the same data record?
● Composition: Algorithms A1, A2 are ε1-DP and ε2-DP ⇒ (A1,A2) is (ε1+ε2)-DP
● In a tree:

○ Queries to different nodes at the same level touch disjoint subsets of the data
○ Queries to nodes at different levels may touch the same data record

● Given a total privacy budget ε, can allocate it to the d+1 levels of the tree so 
that ε0 + ε1 + ⋯ + εd = ε



Main question

How can we obtain estimates for hierarchical queries that are consistent and have 
minimum possible error?

Two main results:

● A post-processing algorithm that reduces the error of estimates and ensures 
consistency with the hierarchical structure

● A procedure for optimizing the allocation of the privacy budget among the 
levels of the hierarchy



Post-processing algorithm

● Observation: the value of any internal node should equal the sum of the 
values of its children (consistency).

● Given independent estimates e1, e2 of the same quantity with variances v1, v2:
○ Can obtain other unbiased estimates by taking a convex combination α e1 + (1- α) e2
○ The optimal combination has α = v2 / (v1 + v2), yielding an improved variance of v1v2/(v1+v2)

● How can we optimally take into account all constraints encoded in the tree?



Post-processing algorithm

Given: estimates zv of the count at each node v, and their variances varv

Bottom-up pass. For each internal node v from largest to smallest depth:

Update zv to be the minimum-variance convex combination of zv and ∑u∈child(v)zu, 
and compute the corresponding variance varv.

Top-down pass. For each internal node v from smallest to largest depth:

Update zu for each u ∈ child(v) by splitting the discrepancy zv - ∑u∈child(v)zu among 
the children proportionally to the variance varu of each child estimate.

Output the final estimates zu



Post-processing algorithm

● Optimal: computes best linear unbiased estimator
● Better privacy/accuracy tradeoff: given noisy estimates for each tree node, 

produces estimates with lower error, without any additional privacy leakage
● Produces consistent estimates
● Linear-time algorithm
● Can be extended to compute variances as well as estimates
● Extends the methods of [Hay et al., VLDB’10, Cormode et al., ICDE’12], which 

apply to regular trees; also related to the matrix mechanism of [Li et al., VLDB 
’15, Nikolov et al., STOC’13], which in general requires ≥ quadratic time (nω).



Allocating the privacy budget

● Post-processing tells us the optimal way to use a set of measurements, but 
which measurements should we take?

● For total budget ε, can split it in many ways among the levels of the tree
● Given (noisy) historical data or a prior, can compare these options
● Optimize to choose the best privacy budget split
● Simple greedy approach:

○ Divide total budget into k increments
○ In each iteration, allocate ε/k additional budget to the level that most decreases the overall 

error after post-processing



Evaluation

● Evaluated on two public Criteo datasets, Sponsored Search Conversion Log 
(CSSCL) and Attribute Modeling for Bidding (CAMB)

● Selected attributes from each dataset to construct hierarchy
● Split datasets into budgeting data and test data based on click time
● Compared five approaches: 

○ equal budget split, with and without post-processing
○ all budget on bottom level, with post-processing
○ optimizing per-level privacy budgets, with and without post-processing



Evaluation

Five-attribute hierarchy using Criteo Sponsored Search 
Conversion Log (CSSCL) dataset, τ = 10

Four-attribute hierarchy using Criteo Attribution 
Modeling for Bidding (CAMB) dataset, τ = 10



Evaluation

Four-attribute hierarchy using Criteo Sponsored Search 
Conversion Log (CSSCL) dataset, τ = 10

Three-attribute hierarchy using Criteo Attribution 
Modeling for Bidding (CAMB) dataset, τ = 10


