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Overview of DP-SGD

12-norm
backprop o
1] clipping T —
L ]
1 > — (D — ——
L ]
] e — -
average Gaussian
o gradient noise
Mini-batch (per-example) (per-example)
of Training gradient gradient
Examples vectors vectors
Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Onptimizer v
Mironov, I., Talwar, K. and Zhang, L., 2016, October. SGpD/Ad ~ I
Deep learning with differential privacy. In Proceedings ( am) noised & private
of the 2016 ACM SIGSAC conference on computer P

and communications security (pp. 308-318). gradient vector

Google Confidential + Proprietary


https://arxiv.org/pdf/1607.00133.pdf

Ads Modeling Overview and Challenges

Google

Adtechs use models to place ads

P(Click | Advertisement) - pCTR
o Public Criteo pCTR dataset
o Binary classification
o Loss: 1 - AUC (AUC = Area under ROC curve)

Models are large
o Billions of parameters

Data is sparse and class-imbalanced

Advertisement

pCTR

Click
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What We Contribute

e We show a recipe for training ads models for strong privacy-utility trade off

e We show a simple method for tuning DP-SGD hyperparameters in practice

e We use a new, computationally efficient method for PLD accounting

e We implement DP-SGD that is significantly faster and has low overheads
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Hyperparameter tuning
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Hyperparameter Tuning Overview

e Optimal hyperparameters change!
o  Optimizer
o Learning Rate
o Batch size
o L2clipnorm

e Also depend on privacy budget

o epsilon (g) <-> privacy budget

e Batch size and L2 clip norm can be
tuned before the others
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Bigger Batches Need Less Noise

Google

Noise only added once per batch
o Bigger batches = Less noise per example

Large batches often take more
epochs to converge

Can tune batch size before tuning
other hyperparameters

noise std

Fixed Epochs

1l
w o
o w

=
=
=}
—
o
1
&

noise std
=
o
L

,_.
o
&

10° 10 10° 108 103 10* 105 106
batch size batch size

(A) Fixed Epochs (B) Fixed Steps

Dotted line shows non-private baseline batch size
at various privacy
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Clip Norm is a Bias Variance Tradeoff

Clip Norm Too High

e Noise is scaled with clip norm

- — Clip Norm Just Right

Gradient Magnitude

e Clipping gradients loses signal

Clip Norm Too Low

Example

Sweep L2 Clip Norm - One Epoch - No Noise

25

e Tune clip norm using fixed batch size
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Micro-batching

Google
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DP-SGD implementation
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Tighter Privacy Accounting
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Privacy Loss Distribution (PLD) Accounting

. N . 0.7820 =
e Privacy loss distribution accounting ' e
o Tighter than RDP 0.7815
o Lots of prior work (see footnotes)" 23 0.7810
o  Connect-the-dots algorithm is efficient O 0.7805
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e Improves loss by about 0.5% Epsilon

Loss vs privacy level with standard Renyi DP and
improved PLD connect-the-dots accounting
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https://github.com/google/differential-privacy

Efficient Implementation of DP-SGD
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Naive Implementation - Slow and memory inefficient!!!

Requires A Backward Pass for Each Example

Google

Non-private:
o Max batch size
1,000,000
o ~20,000 ex/second
Naive DP-SGD:
o Max batch size 50
o ~1,000 ex/second

Batch of Example Losses
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Gradient

Many Copies of the Gradient - High Memory Cost!
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Careful Implementation of DP-SGD - 20% Slower than Non-Private

STEP 1: STANDARD BACKPROP TO COMPUTE NORMS

Weight N + 1
Compute Per
Activation N —» Example Norm for
Each Layer
Weight N

Activation N - 1

Implementation of gradient norm algorithm from:
GOOgle Goodfellow, . Efficient per-example gradient computations. Confidential + Proprietary
arXiv preprint arXiv:1510.01799, 2015.



Careful Implementation of DP-SGD - 20% Slower than Non-Private

STEP 1: STANDARD BACKPROP TO COMPUTE NORMS
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STEP 2: BACKPROP USING PRECOMPUTED NORMS
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Implementation of gradient norm algorithm from:
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arXiv preprint arXiv:1510.01799, 2015.



Careful Implementation of DP-SGD - 20% Slower than Non-Private

Algorithm -
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Naive DP-SGD implementation runs out of memory
and is orders of magnitude slower than

Implementation of gradient norm algorithm from: or Non-prlvate Tralnlng
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Results
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Results
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Competitive Loss with DP-SGD:

o +6.27% Loss @ epsilon 10
o +13.58% Loss @ epsilon 1
o +16.11% Loss @ epsilon 0.5

Compute needs increased by 20%

Privacy-Utility for Probability of Ad Click (pCTR)

% Loss Increase
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Privacy Cost (Epsilon, Delta 1e-9)
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Comparison to Label-DP

e Label-DP 0.84 — Non-private Baseline ~ WEM LabelDP  W8M DP-SGD
o Protects privacy of the labels 0.82

o Randomized response mechanism 0.80
o Provides better utility in most regimes ¢,
2
0.76
0.74
e DP-SGD -
o Protects both inputs and labels |

o Provides better utility in high privacy 100 30.0 500
. Prlvacy Budget (epS|Ion)
regimes
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Takeaways

e Optimal hyperparameters change for private model training

e Carefully implemented DP-SGD is nearly as fast as non-private training

e Competitive privacy-utility trade offs are possible on real-world ads problems
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