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Advertising e-commerce products: staging
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vanilla staging (using pix2pix)

[1] Isola et. al, “Image-to-Image Translation with Conditional Adversarial Networks”, CVPR 2017


https://paperswithcode.com/conference/cvpr-2017-7

Task 1: vanilla staging (using pix2pix)

HM Pix2pix [1] is a conditional generative adversarial network (GAN)
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[1] Isola et. al, “Image-to-Image Translation with Conditional Adversarial Networks”, CVPR 2017


https://paperswithcode.com/conference/cvpr-2017-7

Staging products using image generation: task 2
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Copy-paste staging: core idea
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Copy-paste staging workflow (retrieval assisted gen.)
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Copy-paste staging workflow (retrieval assisted gen.)
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Image inpainting

% Image inpainting is the task of reconstructing missing regions in an image, e.g.

object removal, image restoration, manipulation.
% We propose to use an adapted EdgeConnect [2] model to fill the gap between the
empty mask (from the staged product) and the target (unstaged) product.
> EdgeConnect: generated edges and then generates color and texture
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[2] Nazeri et. al, “EdgeConnect: Structure Guided Image Inpainting using Edge Prediction”, ICCV 2019.


https://github.com/knazeri/edge-connect

Image inpainting

% Image inpainting is the task of reconstructing missing regions in an image, e.g.
object removal, image restoration, manipulation.

% We propose to use an adapted EdgeConnect [2] model to fill the gap between the

empty mask (from the staged product) and the target (unstaged) product.

> EdgeConnect: generated edges and then generates color and texture

> Our adaptation: weighted boundary loss to focus on boundaries

ground truth conventional free-form mask higher penalty for boundaries

[2] Nazeri et. al, “EdgeConnect: Structure Guided Image Inpainting using Edge Prediction”, ICCV 2019.


https://github.com/knazeri/edge-connect

Copy-paste staging demo
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Results: human evaluation

Human auditors were given three tasks (100 samples per task)

audit task score
vanilla staging (pix2pix) better than ground truth 0%
copy-paste staging (our approach) better than ground truth 3%

copy-paste staging better than vanilla staging (pix2pix) 76%



Results: FID

Experiments on data from Yahoo (sample of ~ 2000 furniture product images).

Frechet Inception Distance (FID) [3] calculates the (feature distribution) distance between
target domain and generated domain; the smaller the better.

baseline FID our approach FID
(EdgeConnect) (EdgeConnect + weighted
boundary loss)

copy-paste staging 38.44 37.44

[3] Heusel et. al, “GANSs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium” , NeurlPS 2017.



What about the bonus?
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Image to parallax animation

Link to video:
https://www.dropbox.com/s/9at5gz24ukhf2gi/product_staging_image_to_parallax_demo.mp4?d|=0



Image to parallax animation

Link to video:
https://www.dropbox.com/s/9at5gz24ukhf2gi/product_staging_image_to_parallax_demo.mp4?d|=0


https://docs.google.com/file/d/1J94NOSkLkHvlNeyo1VgIwNqt0Z-AobgX/preview

Conclusion

staged background generation

task 1 task 2 task 3 (bonus )
vanilla staging copy-paste staging .
(unstaged — staged (copy staging from other image — parallax

via background gen.) product images + in-paint) animation

% copy-paste better than vanilla (FID, human eval.); need online test for further validation
% room for improvement in terms of shadows/lighting, hallucinations
% retrieval based ideas can be extended to recent stable diffusion based models




