Towards the Better Ranking Consistency: A Multi-task Learning Framework for Early Stage Ads Ranking

Xuewei Wang Meta AdKDD 23

Work by: X Wang, Q Jin, S Huang, M Zhang, X Liu, Z Zhao, Y Chen, Z Zhang, J Yang, E Wen, S Chordia, W Chen, Q Huang

01 Background

Ads Ranking system

- Multi-stage ranking system: Trade-off between capacity and efficiency
 - Early stage: Simplified model with latency constraint Ο
 - Final stage: Large capacity model with good accuracy Ο
- Multi-objective ranking system
 - Ad Auction depend on **Total Value** 0
 - Bid placed by an advertiser for that ad
 - - Estimated action rates (e.g. CTR, CVR)
 - Ad Quality for user's ads experience
 - E.g. hide ads, report bad ads

02 Motivation

Ranking Consistency

- Ideal Status
 - Early stage and final stage have same ranking orders for ads Ο
- Ranking consistency issue:
 - Top ads in the final stage are ranked low in the early stage
- Gap between final stage and early stage:
 - Performance gap
 - Total value definition inconsistency Ο
 - The early stage models' (i.e. ad quality models) development lags behind final stage models.
 - Selection bias Ο

03 Measurement

Ads recall for ranking consistency

- Why recall?
 - We only care about the top ad candidates for user impression, rather than the lower-ranked ones
- Challenge:
 - The accurate recall is difficult to compute with large candidates Ο
- Solutions:
 - Offline simulated recall Ο
 - We replay a small traffic with full ad requests in simulators, with relaxed timeouts between stages, to ensure that all ads from retrieval stages are ranked.

04 Methods

Multi-task learning for early stage ranking

- Ranking consistency improvement
 - Learn from final stage ads quality models Ο
 - Learn from final stage CTR model Ο
- Resource saving by model consolidation
 - Ads quality & CTR models need to predict on most ads
- Mitigation of selection bias
 - Data augmentation with non-impression data Ο

Multi-task learning for early stage ranking

- New objective:
 - Consolidated Quality Score (CQS): Final stage total quality score

$$AdQuality = f(CQS)$$
$$CQS = \sum_{i=1}^{N} scalar_{i} * pQualityEvent_{i}$$
$$L_{cqs} = \frac{1}{n} \sum_{i=1}^{n} (CQS_{i} - y_{cqs})^{2}$$

• Final stage CTR teacher distillation

$$L_{teacher} = -[eCTR * \log(y_{ctr}) + (1 - eCTR) * \log(y_{ctr})]$$

- Data Augmentation
 - Final stage eCTR as pseudo label for CTR task
 - Train on impression ads + non-impression ads
 - Help de-bias on both ads quality and CTR

05 Experiments

Consolidate Ads Quality Models

- Offline Soft Recall:
 - the sum of final stage ads total value of top K ads picked by the model divided by sum of total value of the golden set.
- Total Value
 - \circ $\,$ Sum of total value for impression ads $\,$
- TVD
 - Total value divergence between final stage and early stage
- Ads quality metrics:
 - \circ $% \ensuremath{\mathsf{Xout}}$ rate: the ads cross-out rate
 - ASQ: a survey-assessment based metrics for ads quality related signals.
- Recall and Total Value improved
- Better Ads quality and higher CTR

Table 1: The CQS model's relative performance compared with production early stage quality models. The token (+) means better performance with higher values, and (-) means better performance with lower values.

Recall (+)	+3.2%
Xout rate (-)	-1.8%
ASQ (+)	+0.02
TVD (-)	-7.9%
CTR (+)	+1.7%
CVR (+)	+2.0%
Total Value (+)	+1.0%
total CPU (-)	-0.7%

05 Experiments

Multi-task Learning of CQS and CTR

- Significant improvement on ads recall & total value
- CTR and CVR also increased

Recall Xout ra ASQ (+ TVD (-CTR (+ CVR (+ Total V total C

Table 2: The multi-task learning framework's relative performance compared with individual CQS model and CTR model. The token (+) means better performance with higher values, and (-) means better performance with lower values.

(+)	+12.2%	
ate (-)	-3.5%	
+)	+0.005	
-)	-5.7%	
-)	+0.4%	
+)	+0.8%	
Value (+)	+3.0%	
CPU (-)	-0.06%	

05 Experiments

Ablation study

 Dedicated CTR Remove CQS task in MT framew Dedicated CQS 	Dedicated CTR + CQ MT w/o Teacher task MT w/o Augmented
 Remove CTR & teacher task in M 	1T
framework	10.0
 MT w/o teacher: Remove teacher task 	7.5
 MT w/o augmented data 	<u>§</u> 5.0
 Train only on impression data 	en 2.5
	Ū 0.0

	NE diff (-)	MSE diff (-)	Recall (+)
QS	-0.04%	-0.6%	-0.6%
sk	+0.3%	-0.5%	-1.6%
l data	-	-	-11.9%

-2.5

06 Conclusions

- Each component in our multi-task learning framework is essential to improve the performance.
- This framework can be generalized to other user cases since the CQS can be applied to any ads ranking system with the ads quality component.
- Compared with NE and MSE metrics, the offline recall evaluation metric can reflect online performance (i.e. total value) better
 - Single offline metric for an individual ranking model may not be reliable to reflect online 0 performance.

Thank you!

