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Introduction
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Background

Learning feature interactions are important to the model performance
of online ads ranking system.

Extensive efforts have been introduced to learn diffrent type of feature
interactions: DeepCrossing, DeepFM, PNN, xDeepFM, AutoInt,
FiBiNET, xDeepInt, DCN V2.
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Background Cont.

The practical performance of those designs can vary by dataset.

Different feature interaction learning methods may have different
advantages and the interactions captured by them have
non-overlapping information.
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Motivation

Ensemble

Ensemble of various interaction modules to generate heterogeneous
feature interactions.
Each feature interaction learning approach can complement the
non-overlapping knowledge.

Conditional Computation (instance-aware)

Dynamically select feature interaction types.
Dynamically select optimal feature interaction depth.
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Model Architecture
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The Architecture of AdaEnsemble
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AdaEnsemble Components

Sparse Mixture-of-Experts Layer:

Feature Interaction Experts
Selecting the feature interaction experts
Dynamically (instance-aware) activate and ensemble them

Depth Selecting Controller

Selecting the feature interaction depth
Recursively forward-propagate and compute deeper feature interactions
Compute final prediction when reaching selected depth (instance-aware)
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The Architecture of Sparse Mixture-of-Experts Layer
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SparseMoE Components

Feature Interaction Experts

Noisy Gating Network:

A neural network selecting the Top-K experts per instance.
Annealing Top-K Gating.
Load Distribution Regularization.

Sparse Dispatcher

Dispatch input and sparsely activate corresponding experts.
Combine each expert’s output.
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Feature Interaction Experts

Dense Layer

Xl = σ(Wl · Xl−1)

Convolution Layer

Xl = Dense(Pooling(Conv1D(Reshape(Xl−1))))

Multi-Head Self-Attention Layer

Xl = Dense(MultiHeadSelfAttention(Reshape(Xl−1))

Polynomial Interaction Layer

Xl = Xl−1 ◦ (Wl · X0)

Cross Layer

Xl = X0 ◦ (Wl · Xl−1) + bl
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Noisy Gating Network
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Figure: The Noisy Gating Network within Sparse Mixture-of-Experts Layer
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Noisy Gating Network Cont.

Annealing Top-K Gating:

Dense → Sparse.
All experts → Fewer experts.
Fully trained experts → Expert Routing.

Load Distribution Regularization

Homogeneous Experts: Lbalance = λ · N ·
∑N

j=1 fj · Pj .

fj is the fraction of examples dispatched to expert j
Pj is the average of the router probability allocated for expert j

Heterogeneous Experts: Ldistribution = λ ·
∑N

j=1
fj ·Pj

wj
.∑N

j=1 wj = 1
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Depth Selecting Controller

Estimator Layer:

Different interaction depth has a corresponding estimator layer.
A dense layer computes the final prediction.

Depth Selecting Network:

A neural network selects the feature interaction depth per instance.
Recursive Propagation

Compute deeper feature interactions (Enter).
Compute final predictions (Exit)
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Recursive Propagation
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Figure: Visualization of Recursive Propagation
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Loss Function

Loss = LLogLoss + λ1L
expert
distribution + λ2L

depth
distribution (1)

where λ1 and λ2 are the coefficients for weighting the load distribution
regularization of experts and depth.
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Bi-Level Optimization

Bi-Level Optimization Algorithm:

Iteratively optimize the parameters W and α.
W : the expert layers and estimator layers.
α: the expert gating network and depth selecting network
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Recap
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Experiment
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Model Performance Comparison

Criteo Avazu iPinYou
Model AUC LogLoss AUC LogLoss AUC LogLoss

LR 0.7924 0.4577 0.7533 0.3952 0.7692 0.005605
FM 0.8030 0.4487 0.7652 0.3889 0.7737 0.005576
DNN 0.8051 0.4461 0.7627 0.3895 0.7732 0.005749

Wide&Deep 0.8062 0.4451 0.7637 0.3889 0.7763 0.005589
DeepFM 0.8069 0.4445 0.7665 0.3879 0.7749 0.005609

DeepCrossing 0.8068 0.4456 0.7628 0.3891 0.7706 0.005657
DCN 0.8056 0.4457 0.7661 0.3880 0.7758 0.005682
PNN 0.8083 0.4433 0.7663 0.3882 0.7783 0.005584

xDeepFM 0.8077 0.4439 0.7668 0.3878 0.7772 0.005664
AutoInt 0.8053 0.4462 0.7650 0.3883 0.7732 0.005758
FiBiNET 0.8082 0.4439 0.7652 0.3886 0.7756 0.005679
xDeepInt 0.8111 0.4408 0.7672 0.3876 0.7790 0.005567
DCN V2 0.8086 0.4433 0.7662 0.3882 0.7765 0.005593

AdaEnsemble 0.8132 0.4394 0.7687 0.3865 0.7807 0.005550
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Feature Interaction Expert Selection Analysis

Table: Performance Comparison of SparseMoE and DenseMoE on Criteo Dataset.

AUC LogLoss FLOPs

SparseMoE(k=1) 0.8096 0.4423 2.26M
SparseMoE(k=2) 0.8121 0.4400 4.14M
SparseMoE(k=3) 0.8132 0.4394 6.02M
SparseMoE(k=4) 0.8133 0.4393 7.09M
DenseMoE 0.8133 0.4392 9.78M
Ensemble 0.8120 0.4401 12.15M
Dense Expert Only 0.8050 0.4463 3.71M
Cross Expert Only 0.8086 0.4433 3.36M
Polynomial Expert Only 0.8111 0.4408 3.32M
CNN Expert Only 0.8022 0.4501 1.11M
MHSA Expert Only 0.8051 0.4465 2.17M
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Feature Interaction Expert Selection Analysis Cont.
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Figure: The Alluvial diagram for illustrating the dependency of each SparseMoE
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Conclusions
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Conclusions

We propose a AdaEnsemble leveraging a Sparse-Gated
Mixture-of-Experts (SparseMoE) layer and a Depth Selecting
Controller, which increased model capacity without raising online
inference cost.

With the conditional computation mechanism applied, the model
selects feature interaction experts and optimal depth for each example
simultaneously.
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End

Thank You!
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