TwERC: High Performance Ensembled Candidate Generation for
Ads Recommendation at Twitter

Vanessa Cai”
Twitter
San Francisco, CA, USA

Pradeep Prabakar”
Twitter
San Francisco, CA, USA

Lucas Rosen
Twitter
New York, NY, USA

Manuel Serrano
Rebuelta

Twitter
New York City, NY, USA

Federico Monti Katarzyna Janocha Tomo Lazovich Jeetu Raj
Twitter Cortex Twitter Cortex Twitter Cortex Twitter
London, UK London, UK Boston, MA, USA Seattle, WA, USA
Yedendra Shrinivasan Hao Lit Thomas Markovich#

Twitter Cortex
New York City, NY, USA

ABSTRACT

Recommendation systems are a core feature of social media compa-
nies with their uses including recommending organic and promoted
contents. Many modern recommendation systems are split into mul-
tiple stages - candidate generation and heavy ranking - to balance
computational cost against recommendation quality. We focus on
the candidate generation phase of a large-scale ads recommenda-
tion problem in this paper, and present a machine learning first
heterogeneous re-architecture of this stage which we term TwERC.
We show that a system that combines a real-time light ranker with
sourcing strategies capable of capturing additional information pro-
vides validated gains. We present two strategies. The first strategy
uses a notion of similarity in the interaction graph, while the second
strategy caches previous scores from the ranking stage. The graph
based strategy achieves a 4.08% revenue gain and the rankscore
based strategy achieves a 1.38% gain. These two strategies have
biases that complement both the light ranker and one another. Fi-
nally, we describe a set of metrics that we believe are valuable as a
means of understanding the complex product trade offs inherent in
industrial candidate generation systems.

CCS CONCEPTS

+ Information systems — Recommender systems; Personal-
ization; Nearest-neighbor search.

“Both authors contributed equally to this research.
1LEqual Contributions
*Corresponding author: thomasmarkovich@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AdKDD, August 7, 2023, Longbeach, CA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Twitter
Seattle, WA, USA

Twitter Cortex
Boston, MA, USA

KEYWORDS

Candidate Generation, Recommendation Systems, Information Re-
trieval, Personalization

ACM Reference Format:

Vanessa Cai, Pradeep Prabakar, Manuel Serrano Rebuelta, Lucas Rosen,
Federico Monti, Katarzyna Janocha, Tomo Lazovich, Jeetu Raj, Yedendra
Shrinivasan, Hao Li, and Thomas Markovich. 2023. TWERC: High Per-
formance Ensembled Candidate Generation for Ads Recommendation at
Twitter. In Proceedings of AdKDD. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Modern advertising systems are built around recommendation sys-
tems, which seek to recommend an advertisement to a user given
everything the system knows about the user, similar users, the
advertisement, and advertisements like it [5, 9]. Recommendation
systems are used to predict a user’s expected engagement rate.
The predicted engagement rate is usually combined with adver-
tiser specified bid to holistically achieve a desirable balance among
users, advertisers, and the platform, so that users are delighted by
the ads experience, advertisers are satisfied with the marketing
return-on-investment, and the platform can monetize the traffic.
The task of ranking all active ads in real-time has become compu-
tationally prohibitive as the ads inventories have grown and the
model complexity has increased.

To address this issue, modern recommendation systems divide
the task into two parts, candidate generation and ranking, as it
allows for a more efficient use of computational resources within a
tight latency budget, and can lead to better performance compared
to a single-stage approach [10]. Candidate generation systems aim
to filter the space of all eligible items, which can number in the
billions, down to a set of a few thousand likely relevant items
for ranking. These methods are often evaluated by recall, which
measures the proportion of relevant items that are successfully
retrieved. Ranking models then take the relevant items that have
been identified by the candidate generation process and use complex
models to predict the likelihood of engagement. The goal of ranking
models is to sort the relevant items by their predicted utilities (a
combination of engagement likelihoods and advertiser specified

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AdKDD, August 7, 2023, Longbeach, CA

bids in the ads recommendation problem). Though ranking models
have received extensive study [2, 6, 11, 14, 15], candidate generation
systems have received less attention in both the academic literature
and industrial applications [12].

In this work, we focus on the candidate generation side of recom-
mendation systems and develop a system called Twitter Ensembled
Retrieval of Candidates (TWERC), with a focus on ads applications.
In section 2, we present a rebuilt Twitter ads candidate generation
stack system that includes a system for combating feedback loops in
recommendation systems, a fully counterfactual candidate genera-
tion method, a graph similarity-based candidate generation method,
and a blender that combines all of these sources together. These
pieces combine together to form TWERC. We review both offline
and online experiments for TWERC in section 3, and show that
this rebuilt system improves the efficiency and effectiveness of the
candidate generation process by reducing the number of irrelevant
advertisements that are shown to users. Finally, we present our
conclusions in section 4.

2 THEORY AND METHODS

After a user opens up or refreshes their home timeline, the page
displays a combination of organic recommendations and advertise-
ments. The organic content and advertisements are ranked con-
currently, and mixed together at the end of the pipeline with each
ad being inserted into the associated advertising slot. The recom-
mendation system built for advertising recommendations contains
three major stages: targeting and filtering; early ranking; and heavy
ranking and auction. The targeting and filtering applies both hard
and soft constraints to the active advertisements, to ensure that
we only recommend ads to a user that the advertisers intended
the user to see. The set of ads that pass this early filtering stage
are then sent to a light ranker. The topK advertisements are then
sent to our heavy ranking system, which computes the calibrated
probability of engagement for the ad given the optimization ob-
jective of that advertisement. In contrast to the light ranker, these
heavy ranking models include many heavier-weight features such
as richer content representations or graph based user representa-
tions [7], and a much more complex architecture [15]. The heavy
ranking models output a probability of engagement, pEng, that we
then use to compute the rankscore for the second price auction.
The rankscore is our best estimate of the overall value or utility of
showing a particular ad, and is a function of the advertiser’s bid
and other factors like predicted engagement rates.

The above system is the product of years of development by
many Twitter engineers. While we are always making improve-
ments to the system, we have observed that making improvements
to the input feature size and expressiveness of the light ranker is not
generally feasible due to the tight latency budget. An alternative
way forward to improve the early ranking stage is to perform what
we call tail replacement. Tail replacement in this setting specifically
means replacing the bottom M% of the topK ads from the light
ranker with a different strategy that is complementary and efficient.
In this section we explore two separate, but complementary, ap-
proaches for tail replacement — rankscore candidate generation and
graph based candidate generation, and highlight practical consid-
erations associated with putting these techniques into production.

Cai and Prabakar, et al.

We then discuss the process by which we combine candidates from
all three different sources, and finally turn our attention to metrics
and figures of merit.

2.1 Rankscore Candidate Generation

Unconstrained Ad Serving The unconstrained ad serving system
(UAS) is a counterfactual data collection service that scores all the
eligible ad candidates at the request level with a low sample rate.
The selected request is duplicated and is then sent to a staging envi-
ronment to get all ad candidates’ bid and predicted engagement rate
(positive and negative). In median, UAS scores approximately 50x
more than the production scoring volume, granting the capability
of observing the quality of ads that might have been filtered out
by the early rankers, thus overcoming the infamous selection bias
problem in large-scale online interactive/recommendation systems.
With the logged bid and predicted engagement rate, we are able
to calculate the rankscore of all the ad candidates. This data al-
lows us to bypass the common recommendation systems feedback
loop, because we are able to rank, and scribe, all relevant ads for a
user; rather than a filtered subset. This allows us to train the early
ranking system on all data, rather than just its previous outputs.
Additionally, we used these data to identify significant headroom
(or regret of the current system) by optimizing the topK candidates
in the early funnel.

Candidate Generation The counterfactual data is not only
used in measuring the regret and/or opportunity size, but also
processed to generate user-level topK ad candidates by expected
value, through a process of downsampling requests and by remov-
ing invalid or incomplete requests. To be more specific, for each
user u and eligible ad a we collect rankscore(u, a, t) at time ¢ from
UAS with a 3-week lookback window, and calculate the time-aware
user-ad quality score q(u, a),

> rankscore(u, a, t) - e! %

Z et—to

The quality score is a weighted average at the (u, a) level, with the
weight being the elapsed time between the data collection time ¢
and the pipeline running time ty. Effectively, this self-normalized
score gives more weight to the fresher data points. Practically, we
observe the time-aware weighting plays a significant role in adapt-
ing the volatile nature of the rankscore, and contributes significant
incremental business impact on top of a simple average aggregation.
Then for each UAS covered user, we generate topK ads with the
highest q(u, a) scores. We set up recurring jobs to generate these
high value ad candidates every 3 hours and store them in a Man-
hattan dataset (MH) [1], and the MH dataset is consumed by the ad
mixer at serving time. Though all the UAS scored ads were eligible
as of the data collection time, advertisers sometimes update their
budget and targting criteria. To make sure we always fully respect
advertisers’ targeting criteria and their budget consumption status,
we apply an online filter at the serving time too.

q(u,a) = (1

2.2 Graph Based Candidate Sourcing

Inspired by previous work at Twitter [7] and elsewhere [12], we
choose to construct a heterogeneous graph embedding and use this
as the core of our similarity search.

TwERC: High Performance Ensembled Candidate Generation for Ads Recommendation at Twitter

[Eligible Ads after Targeting Filters]

Early Ranking

Ranking
and Auction

Figure 1: New sourcing components (highlighted) in the serv-
ing funnel.

Graph Embeddings For the graph based candidate sourcing
strategy, we choose to construct a directed multigraph from the
engagements between users and the advertisements they have en-
gaged with. This is done by processing the event level data into a
heterogeneous engagement graph with different vertex types (e.g.
user, advertisement, advertiser, application, video), and carefully
design the edge label definition. While we did not downsample data,
we did clean data of all incomplete or otherwise invalid events. Fol-
lowing the recipe of TWHIN [7], we then embed this graph in a
lower dimensional space. We generated these TWHIN embeddings
using the translation operator with the softmax loss function and
dot-product distance function. See [7] for more information. We in-
terpret the distance between a user and an item as the likelihood that
user would engage with that item. This strategy produces manifolds
in which similar users and similar items are clustered together, and
allows us generate candidates through a nearest neighbor search

Embedding Update Cycles The ads engagement graph is con-
structed by aggregating engagements over a fixed time window.
The choice of time window naturally prohibits the representation
of interactions as well as vertices which fall outside that window,
which make it challenging to keep the graph and associated em-
beddings up to date.

We choose to address this issue through a warm-starting proce-
dure. Because we have new vertices associated with new users or
advertisements, we have to compute new embeddings. Starting the
warm-start optimization process with randomly initialized embed-
dings for new entities would move the already converged vertices,
thereby increasing the amount of noise in our embedding updates.
For this reason, we freeze the embeddings of the old vertices while
the embeddings of the new vertices are computed. One can view
this as projecting the new vertices into the existing manifold. Be-
cause the old embeddings are frozen, we only need to include edges
that include any of the new vertices. We term this set of new edges
the A edges. This is where the “tic” update cycle stops. These tic
embeddings are quick enough that we compute them every twelve
hours.

The tic cycle clearly is incapable of capturing the relaxation of
the entire graph due to the new interactions and new vertices. To
do this, the toc cycle constructs an edge list by combining the A
edge list with the complete edge list from the previous embedding.
With this composite edge list in hand, we then unfreeze the old
embeddings and let the entire graph relax until it converges.

AdKDD, August 7, 2023, Longbeach, CA

Candidate Generation Intuitively, we can retrieve a high-recall
set of ad candidates by using a user’s TWHIN embedding to query
its neighboring promoted tweets using an ANN index [3, 8]. To
efficiently retrieve these ads without being constrained by online
latency requirements, we built a mapreduce pipeline that precom-
putes these in batch using the FAISS [8] library for our 130 million
heaviest users. We configured FAISS to use the inverted file index
+ HNSW to improve speed while maintaining high recall. Addi-
tionally, we implemented a filtering step to remove ads that are
ineligible for a particular user due to targeting criteria or insuffi-
cient budget, in order to avoid cache misses during the retrieval
stage. We run this pipeline every six hours to both leverage the
embedding refresh cycle and avoid storing stale or expired ads.

2.3 Blending

With the initial promising online experiment results from both
rankscore candidate generation and graph based candidate sourc-
ing sourcing, we built a blender component in the ads serving early
funnel, which dynamically allocate and effectively merging the
sourced ads capacities from various sourcing strategies. We use a
configuration file (strategy — percentage pairs for each strategy)
to specify the capacity allocation among the sourcing strategies,
and use it in both offline batch data processing and online serv-
ing/merging logic. As an example, in the first blending experiment,
we use a 20%-20% blending between the rankscore sourcing and
graph based sourcing strategies, with the following key-value con-
figuration {"rankscore": 0.2, "graph": 0.2}. With the specified capacity
allocation, we use them to generate a merged Manhattan dataset [1],
and fill in at most 20% of the candidates with counterfactual-based
and graph-based respectively for the full ranking and auction to
further decide the final ads impressions (auction winners), meaning
we replace up to 40% of the tail.

2.4 Efficiency

Both algorithms that we have proposed can be implemented as
batch data pipelines, which feed a distributed key-value store that
is utilized for online serving. Because the recommendations are run
in batch, the impact to real-time serving is limited to the cost of
key-value lookup, which is minimal. The computational resources
required are significantly lower than the business impact they pro-
vide. Because these pipelines are run in batch, any failures will
result in stale recommendations but will not cause serving failures.
We have observed an improvement in product metrics if we run the
pipelines more frequently, because they provide fresher candidates.
We have experimented with a range of refresh-periods and selected
the refresh cycle for each algorithm the represents a reasonable
tradeoff between computational costs and product metrics. Finally,
these pipelines do require maintenance but we have empirically
observed that they are quite stable because they are built on top of
a robust, distributed, data processing framework.

2.5 Metrics

The choice of metrics is both a deeply interesting question and
critical to the success of any project because they will guide the
overall progress of research and development. It is important to

AdKDD, August 7, 2023, Longbeach, CA

find offline metrics that correlate with our various online metrics
and product concerns.

Recall The most obvious and easiest to define metric is recall,
or hit-rate, defined as R = %, where TP is the number of true
positives, or hits, and FN is the number of false negatives. We choose
to define a hit as an engagement that was correctly identified in
the test set. This provides a method to characterize the ability to
predict user engagements. While this is valuable, optimizing for
pure recall can be sub-optimal because it neglects the role of the
auction and the true positive signals can be sparse and has the
potential to underweight brand ads.

Auction Recall To address these issues, we introduce the con-
cept of an auction recall. Specifically, we consider true positives
to be those ads that win the auction for their slot. Optimizing
for auction recall introduces multiple possible issues, including
constructing a system that learns the biases and pathological be-
haviours of the ranking stack that is downstream. While this can
lead to short term metric gains both online and offline, it can easily
lead to long-term product decay. As a result, we typically examine
both auction recall and engagement recall metrics.

Rankscore NCG Rankscore normalized cumulative gain (NCG)
compares a given candidate generation algorithm to a hypothetical
algorithm that always selects the top ads by rankscore. The metric
that is computed is the ratio of the sum of the rankscores of the
ads selected by the algorithm and the potential rankscore sum that
would be found by the hypothetical algorithm. It is defined as:

n Zmi"(m»lci D C:

| =1 4= L,(|Ci|-j+1)
TNCOm = S mintm IR ’ @
i=1 2j=1 L(R; |- j+1)

where R; is the set of rankscores of all eligible ads for the ith request
after targeting filters are applied, C; is a the subset of ad candidates
selected by the candidate generation algorithm from R;, n is the
number of ad requests, and m is set to match the number of ads that
would typically make it to auction. Lower rankscore NCG ratios
indicate a larger headroom for showing more highly ranked ads by
making improvements to candidate generation.

Inequality Finally, we track the top 1 percent share (T1PS) of
the advertisers to evaluate whether our changes are making the
overall ads ecosystem more fair. This is important to improving the
advertising experience on the Twitter platform because it improves
the experience of small and medium sized businesses, which is a
long standing product goal for all online advertising platforms. The
T1PS coefficient is defined as:

Z:51'25(0.99\5|) Si

2iSi '
where S; is the number of served ads among all users from advertiser
i over a given period. Thus the condition, S; > S(g.99y,) restricts to
advertisers in the 99th percentile or top 1 percent of advertisers
with regards to served ads.

Ads Value It is generally difficult to estimate the average value
an advertiser realizes from running an ad campaign on the platform.
While we cannot estimate that exact value because we do not have
access to the per-advertiser exchange rate for engagements, we
can use the average cost per conversion as a natural proxy for that
value. Using this intuition, we derive a measure of proxy ads value

T1PS = (3

Cai and Prabakar, et al.

AdsValue(j) = X; g—iCi j» where j indicates the experiment bucket,
i indicates the campaign index, R; indicates the revenue for that
campaign, C; indicates the number of conversions for that cam-
paign, and C;; is the number of conversions for the i* h campaign in
the j" experiment bucket. An increase in ads value corresponds to
improvements to our ads ecosystem on the demand side. Tracking
the ads value allows us to understand if changes to our recommen-
dation ecosystem are improving the overall long-term value that
we provide to our advertisers in an a/b test setting.

Utility Utility is a derived metric that provides a way to estimate
the statistical performance of our end to end system. To understand
utility, we first have to understand rankscore. Because Twitter is
a second price auction, we need to provide our best estimate for
the overall value of a particular ad. This is done by combining
factors such as the probability of engagement (pEng), probability
of negative engagement (pNeg), the advertisers bid. The utility is
simply the rankscore with observed values used in place of the
probabilities. An increase in utility corresponds to an increase in
the quality of our predictions.

3 EXPERIMENTS

Initial investigations found that the ads serving early funnel has
significant headroom in the rankscore sum ratio, an ads early funnel
metrics indicating the amount of regret we experienced due to
filtering. An additional set of experiments found that truncating
the tail M% of the early ranker’s topK candidates that are sent
to full ranking resulted in no observed decrease to net revenue.
This indicated an opportunity to improve the filtering phase by
experiment with additional candidate generation strategies. We
built TWERC, which provides relevant candidates with controlled
computational costs to meet this need. To do this, we explored four
different strategies that augmented the early ranker. Two of these
strategies are deployed in production.

We ran a range of offline and online experiments to evaluate the
impact of the two separate sourcing strategies that were constructed.
While the experiments presented below are run with each sourcing
strategy in isolation, we later on observe that the impact of the two
sourcing to be additive due to the construction of the blender.

All online experiments were run using a 2% request sampling
strategy, where 2% of the traffic received the treatment. We ran each
experiment for a minimum of seven days to account for statistical
power and weekly user behavioral trends, and tracked a variety of
different metrics to assess improvements to key product metrics.
The results presented below are all statistically significant under a
Benjamini & Yekutieli correction [4] for multiple comparisons.

3.1 Rankscore Candidate Sourcing

Using the unconstrained ad serving system (see Section 2.1), a
counterfactual dataset containing full rankscores of ads, we store
high full rankscore ads at the user level, and complement the topK
candidate decision previously generated solely by the early ranking
model. In practice, we use a trailing 21-day window of the UAS data
to generate the user level sourced ads dataset through a time-aware
weighted average aggregation which give more weights to more
recent rankscore for the user. It is powered by a scheduled batch
job that refreshes every 3 hours. At the serving time, we replace at

TwERC: High Performance Ensembled Candidate Generation for Ads Recommendation at Twitter

Objective RSCS GBCS TDGBCS

Obj 1 11.1% 11% -1.0%
Obj 2 23% 54% 7.9%
Obj 3 47% 23% 102%
Obj 4 201% 45% 7.2%
Obj 5 15.9% 2.0% 9.9%

Table 1: Offline experiment results from our counterfactual
simulator. Here, RSCS is the rank score candidate sourcing
strategy, GBCS is the graph based candidate sourcing strategy,
and TDGBCS is the time dependent graph based candidate
sourcing strategy. All results reflect the auction recall delta
between the production baseline and the experimental sys-
tem.

most M% of the early ranker’s tail topK ads by these offline sourced
ads, and send the merged candidate ads set to the full ranking.

We prepare the sourced ads at the creative-user level. For the
lineitems that are associated with sourced ads, we allow them to
bypass the lineitem ranker, but respect all restrictive targeting
clauses (also known as targeting filters).

We first tested this strategy using our offline simulator, where
we observe improvement, as high as 20% in auction recall across
different advertising objectives, as shown in Table 1.

Based on these offline experiments, we ran a range of online
experiments with a range of different aggregation approaches. In the
final iteration that we shipped to production (Table 2, we observed
an 1.38% increase in net revenue, a 4.71% increase in utility per
mille impressions, and a 1.05% increase in ads value - all statistically
significant with adjusted p-values.

3.2 Graph Based Candidate Sourcing

Previous work using graph embeddings in an offline setting showed
promising results on a variety of ranking and candidate generation
tasks. Inspired by this work, we looked to explore using these
embeddings to generate candidate ads. We began by simulating
auction recall after replacing the bottom M% of the tail of the early
ranker with nearest neighbor candidates as outlined in section 2.2.
In the offline analysis, we found an auction recall improvement
across a variety of different objectives as reflected in Table 1.
Motivated by the offline experiments, we hypothesized that by
adding graph signals, we would be able to better capture relational
information about ads and users that can increase the quality of
retrieved ads. To test this hypothesis, we constructed an online ex-
periment where we precompute sourced ads by finding approximate
nearest ad neighbors in the graph embedding space for one third of
our highly active users offline. These candidates complement the
topK candidate decision previously generated solely by the early
ranking model. In this experiment, we replaced at most M% of the
tail top-ranked ads by the early ranker by these offline sourced
ads, and sent the merged candidate ads set to the full ranking. We
made no change to the downstream full ranking and auction. As
reported in Table 2 we observed statistically significant gains across
reported metrics with adjusted p-values. We additionally analyzed
this experiment in the context of advertiser inequality, and found a
T1PS reduction of 1.2% which was a significant effect. The control
bucket result is also consistent with the historical T1PS. When we
break down by advertiser type, we see that the small and medium

AdKDD, August 7, 2023, Longbeach, CA

Method Revenue Utility Ads Value
RSSC 1.38% 4.71 % 1.05 %
GBCS 4.08% 6.42 % 1.26 %

Table 2: Results from the rankscore candidate sourcing on-
line experiment

businesses and mid-market size advertisers experienced the largest
decreases in inequality, while direct sale and reseller accounts also
experienced moderate decreases. This indicates that our experiment
helped the advertisers who were experiencing the largest levels of
inequality previously. This experiment is a very concrete example
of a case where we can simultaneously increase net revenue and
decrease advertiser inequality — two objectives often thought to be
in conflict.

3.3 Time Dependent Embeddings

The user embeddings that are used as query vectors generally con-
verge to the average of all of the advertisements that the user
engages with. While this provides a reliable way to predict a user’s
most common commercial interests, it misses interests that may
have a temporal nature to them. For example, advertisements for
infant goods may become less relevant over time as a parent’s child
ages. To address this issue, we followed the example of the rankscore
temporal discounting in equation (1) and computed time-decayed
user embeddings as

A(tj=to) gtweet
J

ger = I , @
g e eAMi—to)

where |N| is the set of the last-N engagements, ty is the time the
job runs, t; is the time of the time of the j th interaction, and A is the
decay constant. We implemented this aggregation strategy using a
cloud SQL framework. Using this, we ran tail-replacement offline
experiments using the same simulator that was used for the other
candidate generation experiments, with results reflected in Table 1.
We additionally explored the overlap between candidates using
the time-dependent and time-independent. For users with a long
history if advertising engagements, we observed little overlap be-
tween the two candidate generation strategies. For users with little
to no history, however, the overlap increased significantly. This is
not unexpected, because the time-dependent vector should be close
to the time-independent vector. Finally, we performed a qualitative
analysis of the candidates that are generated using these strategies.
For users for whom we know their interests, we find this strategy
captures emerging interests in some instances, as desired. We are
encouraged by these results, as well as the low computational cost

to generate these embeddings.

3.4 Embedding Induction

As illustrated in the previous section, using the candidates returned
by an ANN-search in the graph embedding space increases the
quality of the tweets returned by the early ranker and in turn, the
revenue generated by the platform. However, not all users can be
served via ANN-search, as users that have never interacted with
an ad or an advertiser do not appear in the engagement graph used
to train graph embeddings, and thus do not enjoy a representation
describing their interests in terms of promoted tweets (a common

AdKDD, August 7, 2023, Longbeach, CA

situation for new and light users for instance). To enhance the qual-
ity of recommended ads to a broader pool of users, we resorted to
Graph Learning techniques to extend the coverage of our embed-
dings. In particular, we implemented an efficient formulation of the
Feature Propagation approach described in [13] that propagates
information over the arcs of the follow graph. We decided to limit
feature propagation to just one hop and infer graph embeddings
for missing users Uy as:

1
Xi= —/—— Z xj VielUy (5)

-
NGOl

where x € R? and N;T(i) is a randomly sampled set of 100
followings of i that do have an embedding (here sampling is intro-
duced to upper-bound the resources required to process each user).
The main intuition is to use the interests of the followings of a
target user as a proxy for the interests of the user themselves. With
this view in mind, the solution illustrated in (5) can be understood
as a form of collaborative filtering where the notion of user-user
similarity is defined by follow connections and the averaging mech-
anism implements a voting system. Empirically, we observed this
approach to perform particularly well in offline experiments and
be extremely efficient at the same time as equation (5) can be easily
implemented with a simple SQL query, which in turn allows to
exploit scalable frameworks such as BigQuery for experimentation.

Table 3 shows the results we obtained for users that have and do
not have (before diffusion) graph embeddings at experimentation
time. Only tweets returned by the ANN-search and that can be
recommended to a user as specified by the advertiser’s targeting
criteria have been considered as possible candidates for a user. A
tweet is considered as relevant for a target user if the user has
interacted with this in the past.

Method With ~ Without
Random ordering 6.5% 10.11%
Inducted graph embeddings 34.38% 42.07%
Graph embeddings 43.53% -
Light Ranker 49.52% 55.61%

Table 3: Offline results on inducted embeddings for users that
with and without a graph embedding (i.e. users that appear
in the ad engagement graph).

Inducted embeddings on the follow graph achieve very good
performance in this offline setting, obtaining a HR@K equal to
~ 79% of the one showed by the true graph embeddings and main-
taining similar performance also on users that do not have a graph
embedding at all. At the time of writing, online evaluation of the
inducted embeddings is ongoing.

Qualitatively, we observed inducted embeddings to produce good
quality results on a few users for which we know their interests,
although they might not always capture peculiarities of the users
themselves. For instance, users based in a country but that predomi-
nantly follow people based abroad tend to get recommended tweets
that are consistent with their interests but that are not necessarily
targeted to residents of their specific country. This particular phe-
nomenon could be attenuated introducing a weighting scheme on

Cai and Prabakar, et al.

the followings of a target user that takes into account similarities in
demographic or potentially engagement. We leave an exploration
of this weighting scheme to future work.

4 CONCLUSION

In this work, we described TWERC- a candidate generation system
that was designed as part of our ads multistage ranking system. We
hypothesized that a heterogeneous candidate generation system
can improve performance without substantially increasing com-
putational costs. We demonstrated that an ensemble of different
techniques, each with their own bias, are able to provide significant
improvements in both offline metrics and product metrics through
the use of online A/B tests. As part of these experiments, we also
outline a suite of metrics monitor various aspects of the complete
ads ecosystem. Finally, we outline multiple exciting new directions
to explore to cost-effectively expand this heterogeneous strategy.

REFERENCES

[1] 2014. Manhattan, Our Real-Time, Multi-Tenant Distributed Database for Twitter
Scale. https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-
time-multi- tenant-distributed- database-for-twitter-scale
Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin,
Todd Phillips, Cristina Pop, Kevin Regan, Gil I Shamir, et al. 2022. On the Factory
Floor: ML Engineering for Industrial-Scale Ads Recommendation Models. arXiv
preprint arXiv:2209.05310 (2022).
Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George Kollios.
2008. Nearest neighbor retrieval using distance-based hashing. In 2008 IEEE 24th
International Conference on Data Engineering. IEEE, 327-336.
Yoav Benjamini and Daniel Yekutieli. 2001. The control of the false discovery
rate in multiple testing under dependency. The Annals of Statistics 29, 4 (2001),
1165 - 1188. https://doi.org/10.1214/a0s/1013699998
Andrei Z Broder. 2008. Computational advertising and recommender systems. In
Proceedings of the 2008 ACM conference on Recommender systems. 1-2.
[6] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the Ist
workshop on deep learning for recommender systems. 7-10.
Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim,
Ramy Eskander, Yury Malkov, Frank Portman, Sofia Samaniego, Ying Xiao, and
Aria Haghighi. 2022. TwHIN: Embedding the Twitter Heterogeneous Information
Network for Personalized Recommendation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. ACM. https:
//doi.org/10.1145/3534678.3539080
Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.
Seongju Kang, Chaeeun Jeong, and Kwangsue Chung. 2020. Tree-based real-time
advertisement recommendation system in online broadcasting. IEEE Access 8
(2020), 192693-192702.
Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang,
and Ruiming Tang. 2022. Neural re-ranking in multi-stage recommender systems:
A review. arXiv preprint arXiv:2202.06602 (2022).
[11] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).
Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM. https:
//doi.org/10.1145/3394486.3403280
Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain,
Xiaowen Dong, and Michael Bronstein. 2022. On the unreasonable effectiveness of
feature propagation in learning on graphs with missing node features. Proceedings
of the First Learning on Graphs Conference (2022).
Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1-7.
[15] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the web conference 2021.
1785-1797.

[2

[3

[4

[5

7

[8

[9

[10

[12

(13

(14

https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1145/3534678.3539080
https://doi.org/10.1145/3534678.3539080
https://doi.org/10.1145/3394486.3403280
https://doi.org/10.1145/3394486.3403280

	Abstract
	1 Introduction
	2 Theory and Methods
	2.1 Rankscore Candidate Generation
	2.2 Graph Based Candidate Sourcing
	2.3 Blending
	2.4 Efficiency
	2.5 Metrics

	3 Experiments
	3.1 Rankscore Candidate Sourcing
	3.2 Graph Based Candidate Sourcing
	3.3 Time Dependent Embeddings
	3.4 Embedding Induction

	4 Conclusion
	References

