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ABSTRACT
This paper proposes a learning model of online ad auctions that
allows for the following four key realistic characteristics of con-
temporary online auctions: (1) ad slots can have different values
and click-through rates depending on users’ search queries, (2) the
number and identity of competing advertisers are unobserved and
change with each auction, (3) advertisers only receive partial, aggre-
gated feedback, and (4) payment rules are only partially specified.
We model advertisers as agents governed by an adversarial bandit
algorithm, independent of auction mechanism intricacies. Our ob-
jective is to simulate the behavior of advertisers for counterfactual
analysis, prediction, and inference purposes. Our findings reveal
that, in such richer environments, “soft floors” can enhance key
performance metrics even when bidders are drawn from the same
population. We further demonstrate how to infer advertiser value
distributions from observed bids, thereby affirming the practical
efficacy of our approach even in a more realistic auction setting.
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1 INTRODUCTION
Online ad auctions are an integral part of contemporary e-commerce.
The prevalence of such auctions has led to the development of a
large literature in both Economics and Computer Science. The vast
majority of these contributions focus on relatively simple auction
formats, in which one or more ad slots are sold using so-called gen-
eralized first- or second-price auctions [4, 26]. These mechanism
adapt the first- and second-price mechanisms from “textbook” auc-
tion theory [18, 21] to account for the fact that online advertising
services often charge prices per click rather than per impression.1

However, real-world online ad auction are highly complex.2
This makes it virtually impossible to analyze equilibrium bidding
behavior and compare the performance (e.g., revenues) of different
auction formats. As a result, businesses selling online ad space lack
principled guidance as to which auction format to adopt.
∗work done while at Amazon Ads; email: mingo.chen198906@gmail.com
†can be reached at sareh@amazon.com
‡can be reached at siniscam@amazon.com or marciano@northwestern.edu
1That is, the winner is charged if / when the user clicks on the winning ad, rather
than when the winning ad is displayed. The key issue is that the “click-through rates”
(probabilities that the user clicks on displayed ads) typically vary across advertisers;
auction mechanisms must then be adjusted to provide incentives for advertisers to bid
according to their true value for showing an ad.
2For standard auctions, equilibrium behavior can be characterized, and conditions
leading to revenue equivalence or revenue ranking can be established [20, 21].

We propose that simulating advertisers’ behavior using well-
understood online-learning algorithms can provide such guidance.
To demonstrate this, we develop an approach that allows for the
following key departure from standard auction formats and their
generalized variants:

(1) The value of an impression or click for a given ad (and slot),
as well as its click through rate, may vary depending on
the shopper’s query, identity, and history. Advertisers can
choose “targeting clauses” to only bid on certain sets of
queries, but cannot condition their bid on individual queries.

(2) The number and identity of advertisers changes from one
auction to the next. However, advertisers do not observe
who they are facing in each individual auction.3

(3) Advertisers receive only incomplete feedback about the out-
come of each individual auction. In particular, they do not ob-
serve other advertisers’ bids, and they only learn the market-
clearing price if they win the auction.

(4) Pricing mechanisms are often incompletely specified. For
instance, ad services may indicate that reserve prices are
used, but not what they are, or how they are computed.4

To reflect the scant information bidders possess when they partic-
ipate in real-world ad auctions, we choose learning algorithms that
only require feedback about individual rewards, and are not tailored
to any specific auction format. We focus on two algorithms: Hedge
[1] and EXP3-IX [19, Chap. 12]. These algorithms, with known re-
gret bounds, are applied in auction learning literature and exemplify
full- and partial-information algorithms respectively.

We provide two sets of results. In the first, we assign artificial
valuations to bidders and simulate their bidding behavior. We con-
sider both small and large number of bidders. We also allow a dense
bid grid, especially compared with earlier studies, and complex
auction environments with multi-query targeting and soft-floor re-
serve prices. These results demonstrate how our approach enables
performance comparisons across different auction formats.

One specific finding is that, with multi-query targeting, soft
floors can lift revenues, even if bidders are ex-ante symmetric. The
second set of results instead demonstrates how to use our approach
to solve the inverse problem, inferring bidders’ valuations through
an iterative parameter search matching bid data5. To do so, we
employ aggregate bid data from an actual production environment
(a major e-commerce website).
3That is, we model auctions as games of incomplete information with a random number
of participants.
4See for instance the documentation for Ad Thresholds in Google Ads.
5This is similar to structural estimation in empirical industrial organization. The
key difference is that the structural equations are not derived from Bayesian Nash
equilibrium behavior, but from the predictions of our learning model.

https://support.google.com/google-ads/answer/7634668?hl=en&ref_topic=24937
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1.1 Related Literature
There is a vast literature in Economics that studies games from the
perspective of learning agents; Fudenberg and Levine [9] provides
an authoritative account.

In computer science, the literature on online learning in auctions
can be roughly divided into two branches. The first takes the per-
spective of the seller and studies the design of revenue-maximizing
auctions; recent studies include Roughgarden and Wang [25] and
Guo et al. [11]. This branch of the literature studies sellers who
employ learning algorithms, but bidders are not explicitly modelled.

The second branch instead takes the perspective of a single
bidder who uses learning algorithms to guide her bidding process.
Weed et al. [27] focus on second-price auctions for a single good,
and assume that the valuation can vary either stochastically or
adversarially in each auction. In a similar environment, Balseiro
et al. [2] and Han et al. [12] study contextual learning in first-price
auctions, where the context is provided by the bidder’s value. For
auctions in which the bidder must learn her own value (as is often
the case in the settings we consider), Feng et al. [6] proposes an
improved version of the EXP3 algorithm that attains a tighter regret
bound. There is also a considerable literature that studies optimal
bidding with a budget constraint using reinforcement-learning: e.g.,
Wu et al. [28], Ghosh et al. [10], and references therein.

Our paper differs from the above references since it models the
interaction among bidders who adopt online learning algorithms.
In this sense, it is closer in spirit to the Economics literature on
learning in games. In addition, unlike the present paper, the cited
references assume that the winning bidder observes her valuations
and payment in each period; some of these papers leverage insights
that depend on specific auction format; and all are concerned with
auctions for a single object or ad slot.

To the best of our knowledge, the closest papers to our own are
Kanmaz and Surer [16], Elzayn et al. [5], and Jeunen et al. [15]. The
first reports on experiments using a multi-agent reinforcement-
learning model in simple sequential (English) auctions for a single
object, with a restricted bid space. Our analysis focuses on simulta-
neous bidding in scenarios that are representative of actual online
ad auctions. The second focuses on position (multi-slot) auctions
and, among other results, reports on experiments using no-regret
learning (specifically, the Hedge algorithm we also use) under stan-
dard generalized second-price and Vickerey-Groves-Clarke pricing
rules. Our analysis is complementary in that we allow for different
targeting clauses and pricing rules. The third describes a simulation
environment similar to ours that is mainly intended to help train
sophisticated bidding algorithms for advertisers. We differ in that
we allow for bids broadly targeting multiple queries, and focus on
learning algorithms that allow us to model auctions with a large
number of bidders; in addition, we demonstrate how to infer values
from observed bids.

Feng et al. [7] establish the convergence to equilibrium of learn-
ing algorithms in first- and second-price auctions, as well as multi-
slot VCGmechanisms. Hartline et al. [14] establish the convergence
of no-regret learning to coarse Bayes correlated equilibrium in gen-
eral games with incomplete information.

Nekipelov et al. [22] proposes techniques for estimating agents’
valuations in generalized second-price auctions, which stands in

contrast to our method that directly utilizes agents’ learning algo-
rithms and is independent of the specific auction format. Rahme
et al. [24] study revenue maximization in auctions as a mechanism
design problem. Peysakhovich et al. [23] predict player behavior,
based on an 𝜖-Bayesian Nash equilibrium instead of no-regret learn-
ing. Bichler et al. [3] suggests a method to calculate 𝜖-Bayesian Nash
equilibria in sealed-bid auctions, focusing on approximating equi-
libria, as opposed to directly modeling bidder learning behavior.

2 AUCTION MODEL
This section introduces the auction model we analyze. For any finite
set X, we denote by Δ(X) the set of probability distributions on X.

We fix a single ad slot, or position, within the ad service’s or
publisher’s web page. Time is discrete and indexed by 𝑡 = 1, 2, . . . ,𝑇 .
In each time period 𝑡 , a user visits the web page and submits a query,
represented by a point 𝑞 in a finite set𝑄 . The probability that query
𝑞 is submitted at time 𝑡 is given by the probability distribution
𝐹𝑄 ∈ Δ(𝑄). The ad service then runs an auction to determine
which ad to show in the given slot.

There are 𝑁 (potential) bidders, whom we also refer to as ad-
vertisers, indexed by 𝑖 = 1, . . . , 𝑁 . Each bidder 𝑖 is characterized
by a type 𝜏𝑖 drawn at the beginning of each period from a finite
set T𝑖 according to a distribution 𝐹𝑖 ∈ Δ(T𝑖 ). We also fix functions
𝑉𝑖 : T𝑖 ×𝑄 → R and CTR𝑖 : T𝑖 ×𝑄 → [0, 1] such that, whenever
bidder 𝑖’s type is 𝜏𝑖 ∈ T𝑖 and the shopper query is 𝑞 ∈ 𝑄 , 𝑖’s value
per click is𝑉𝑖 (𝜏𝑖 , 𝑞) and the ad click-through rate is CTR𝑖 (𝜏𝑖 , 𝑞); these
functions are in practice represented by matrices.

In every period, each bidder 𝑖 simultaneously submits a bid 𝑏𝑖 ∈
R and a targeting clause 𝑐𝑖 ⊂ 𝑄 ; the interpretation is that the bidder
intends to participate in the auction only if the user’s query is an
element of 𝑐𝑖 . The timing is as follows: first, bidder 𝑖 observes her
type 𝜏𝑖 ; then, she places a bid 𝑏𝑖 and a targeting clause 𝑐𝑖 ; finally,
the user query 𝑞 ∈ 𝑄 is realized. Thus, bidders cannot tailor their
bid to the specific user query in a given period. On the other hand,
their bids can and will in practice depend upon their realized type.
The winner of the auction is the bidder with the highest score, i.e.,
the product of their bid and their click-through rate, provided they
targeted the realized query. Formally, if the realized user query is 𝑞
and each bidder 𝑖 has type 𝜏𝑖 , bids 𝑏𝑖 , and targets 𝑐𝑖 , then bidder 𝑖’s
score is 𝑠𝑖 = 𝑏𝑖 · CTR𝑖 (𝜏𝑖 , 𝑞) if 𝑞 ∈ 𝑐𝑖 and 0 otherwise; the winner is
any 𝑖 ∈ argmax𝑗∈𝑁 :𝑞∈𝑐 𝑗 𝑠 𝑗 . Ties are broken randomly.

If the realized user query is 𝑞, bidder 𝑖 wins the auction, and the
charged price per click is 𝑝 , then the average reward (payoff) to
bidder 𝑖 with type 𝜏𝑖 is CTR𝑖 (𝜏𝑖 , 𝑞) · [𝑉𝑖 (𝜏𝑖 , 𝑞) − 𝑝]. Finally, if bidder
𝑖’s targeting clause 𝑐𝑖 does not include the realized 𝑞, or if it does
but 𝑏𝑖 is not the winning bid, her payoff is 0.

The price charged to the winner depends upon the auction rules;
we consider different cases in §4, so we defer the specifics until
then. Similarly, we specify what bidders observe at the end of each
period in §3, as that is a function of the learning algorithm under
consideration. However, we maintain throughout that bidders only
observe their own reward, and not others’ rewards or bids.

The concept of “type”, as introduced by Harsanyi [13], is key to
model games with incomplete information: in every period, each
bidder 𝑖 knows the distribution 𝐹 𝑗 of her opponents 𝑗 , but not their
realized type. In one common interpretation, there is a population
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of potential bidders for every bidder role 𝑖 , each with distinct value
per click and click-through rate; in each period 𝑡 , and for every
bidder role 𝑖 , a specific element of the corresponding population is
drawn according to 𝐹𝑖 . A symmetric environment is one where the
set of bidder types and their distributions are identical; we use this
in §4 for aggregate-level bidding behavior analysis. One alternative
interpretation is that there is a single player (a firm) for every bidder
role 𝑖; her type can represent the fact that the firm may be selling
a range of goods, with per-period variations in values and click-
through rates reflecting product-specific margins and conversion
rates, perhaps due to cost variability, promotions, etc.6

Types can also be used to model (indirectly) a random number of
bidders. Suppose that, for each bidder (or for a subset of bidders),
we define a type 𝜏0

𝑖
who has zero value and click-through rate for

every query. Then, in our learning algorithms, this bidder type will
eventually stop bidding. Hence, out of 𝑁 potential bidders, only
a subset may be active, the ones whose types are different from
𝜏0
𝑖
. We assume type distributions are independent across bidders,

although this could be relaxed as our learning algorithms do not
rely on independence.

Standard auctions are a special case of our model in which there
is a single query: this can be captured by assuming that the set 𝑄
of queries is a singleton, say {𝑞∗}. Thus, a bidder’s type 𝜏𝑖 fully
characterizes her value for the object, and one may as well take 𝑉𝑖
to be the identity:𝑉𝑖 (𝜏𝑖 , 𝑞∗) = 𝜏𝑖 . Traditional “textbook” auctions do
not consider click-through rates; this can be captured by assuming
that each function CTR𝑖 (·) is identically equal to 1. However, pay-
per-click auctions are common in advertising, so we consider them
“standard” as well.

3 LEARNING MODELS
The two main learning models we analyze are Hedge (also referred
to as Exponential Weights or Multiplicative Weights) algo-
rithm [1, 8] and EXP3-IX [17]. We fix a grid 𝐵 of possible bid values.
To streamline notation, for each bidder 𝑖 and time period 𝑡 , we let
𝑎𝑖,𝜏𝑖 ,𝑡 denote the pair (𝑏𝑖 , 𝑐𝑖 ) ∈ 𝐵 × 2𝑄 ≡ 𝐴 of bid and targeting
clause chosen by bidder 𝑖 of type 𝜏𝑖 in period 𝑡 . Relative to standard
expositions of these algorithms [19, e.g.], we add incomplete infor-
mation and incorporate different queries draw in each iteration.

Each bidder type learns from their own observations, not those
of other types of the same bidder, to accommodate incomplete
information. Learning is not conditioned on the unobserved realized
query, reflecting the reality of online ad auctions.

3.1 Model Setup for Auction Environment
We use the following additional notation to describe the auction
environment and learning algorithms. Suppose each bidder 𝑖 bids
𝑏𝑖 on clause 𝑐𝑖 , and prices per query are 𝑝 = (𝑝𝑞). Denote by 𝑐𝑖𝑞 the
indicator function that equals 1 if and only if 𝑞 ∈ 𝑐𝑖 . Then bidder
𝑖’s expected utility if she wins the auction for the (non-empty) set
of queries Q ⊆ {0, . . . , 𝑄 − 1}, given her value and CTR for each
query 𝑞 ∈ Q as 𝑣𝑖𝑞 and 𝐶𝑇𝑅𝑖,𝑞 respectively, is

𝐸𝑈𝑖 (𝑏𝑖 , 𝑐𝑖 , 𝑝) =
∑︁
𝑞∈Q

𝐹𝑄 (𝑞) ·𝐶𝑇𝑅𝑖𝑞 · 𝑐𝑖𝑞 ·
[
𝑣𝑖𝑞 − 𝑝𝑞

]
, (1)

6In either interpretation, formally, types are indices for the functions 𝑉𝑖 and CTR𝑖
with no intrinsic meaning.

where the expectation is due to the random arrival of queries
(𝐹𝑄 (𝑞)) and clicks (𝐶𝑇𝑅𝑖𝑞). In case of ties, for simplicity of im-
plementation, we just divide the winner’s surplus 𝑣𝑖𝑞 − 𝑝𝑞 by 𝑁 ,
rather than (as we should) the number of tying bidders. Losing
bidders get 0 expected utility. Since the EXP3-IX algorithm requires
rewards in [0, 1], we define the normalized reward of bidder 𝑖 as

𝑟𝑖 =
𝐸𝑈𝑖 (𝑏𝑖 , 𝑐𝑖 , 𝑝) − (0 − 𝑏max)
(𝑣max − 0) − (0 − 𝑏max)

=
𝐸𝑈𝑖 (𝑏𝑖 , 𝑐𝑖 , 𝑝) + 𝑏max

𝑣max + 𝑏max
. (2)

This is because the EU of a bidder cannot exceed the maximum
value of the slot for any query if she were to get it for free, i.e.,
𝑣max − 0; and it is always at least as large as getting a worthless slot
and paying the maximum bid for it, i.e., 0 − 𝑏max.

In our auction setting, we apply the Hedge and EXP3-IX algo-
rithms, described in the Appendix. Bidders independently use these
to update their actions based on observed rewards. Hedge assumes
bidders observe rewards for all possible actions, leading to faster
learning but less realistic scenarios. EXP3-IX assumes observation
of the chosen action’s reward, providing a slower but more realistic
learning process. Although Hedge is more computationally efficient
and less dispersed, a deeper investigation of these algorithms’ distri-
butional characteristics is suggested. We chose EXP3-IX over EXP3
due to its tighter bounds on realized regret, despite EXP3’s good
expected regret guarantees.

4 EMPIRICAL RESULTS
4.1 Standard auctions
We first consider a standard, symmetric auction environment with
a single query, so 𝑄 = {𝑞∗}, and pay-per-impression pricing, so
all CTRs are equal to 1. We consider both a small auction with
𝑁 = 2 bidders, and a more realistic one with 𝑁 = 10 bidders.
Values are uniformly distributed on a grid 𝐵 in the interval [0, 1].
Formally, given the grid 𝐵, for all 𝑖 , we let T𝑖 = 𝐵, 𝑉𝑖 (𝑏, 𝑞∗) = 𝑏,
CTR𝑖 (𝑏, 𝑞∗) = 1, and 𝐹𝑖 (𝑏) = 1

|𝐵 | for all 𝑏 ∈ 𝐵. Furthermore, we
allow all bids 𝑏𝑖 on the grid 𝐵.

In a second-price auction, it is a dominant strategy for every
bidder to bid their value. In a first-price auction, with 𝑁 bidders, a
continuum of values (uniformly distributed on [0, 1]) and bids, the
unique symmetric Bayesian Nash equilibrium is for each bidder to
bid a fraction 𝑁−1

𝑁
of their value. Furthermore, Myerson’s revenue

equivalence applies, so the expected revenue for the advertising
service is the same under both formats, namely 𝑁−1

𝑁+1 . We want
to compare these theoretical predictions with the output of our
learning algorithms with a fine enough grid 𝐵, and a long enough
horizon 𝑇 .

We choose 𝐵 = { 𝑖
20 : 𝑖 = 0, . . . , 20} and 𝑇 = 1, 000, 000 for

EXP3-IX. We also choose the tuning parameters optimally, as de-
scribed in Lattimore and Szepesvári [19] (Theorem 12.1, Chapter
12). Table 1 displays revenues for the advertising service in first-
and second-price auctions under EXP3-IX, averaged over the last
10% of the learning period, i.e., 100, 000 iterations, and 5 different
runs of the algorithm, as well as the standard deviation of revenues
across different runs.7
7Throughout the paper, we draw a fixed sequence of type realizations for all bidders.
This ensures that the only randomness is from the algorithms’ choice of action.
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Table 1: Standard single-item auction, EXP3-IX

Auction format Mean Revenue Std. Dev.
First price, 𝑁 = 2 0.3474 0.0205
Second price, 𝑁 = 2 0.3346 0.0016
First price, 𝑁 = 10 0.780 0.0095
Second price, 𝑁 = 10 0.7723 0.0171

Table 2 reports the results for Hedge. We choose 𝑇 = 400, 000
and 𝜂 = 0.02. We averaged over 5 different runs of the algorithm
and over the last 40, 000 time periods.

Table 2: Standard single-item auction, Hedge.

Auction format Mean Revenue Std. Dev.
First price, 𝑁 = 2 0.3201 0.0018
Second price, 𝑁 = 2 0.3256 0.0018
First price, 𝑁 = 10 0.8305 0.0011
Second price, 𝑁 = 10 0.8334 0.0008

The key take-away is that expected revenues are close to the
theoretical value 1

3 for 𝑁 = 2 under both Hedge and Exp3-IX. With
𝑁 = 10, Hedge again approximates the theoretical value 0.81, while
Exp3-IX is not as close. Revenues do not vary much across different
runs. Even when 𝑁 = 2, EXP3-IX required a considerably larger
number of periods to achieve similar results as Hedge.

4.2 Soft floors
Zeithammer [29] shows that, in a symmetric auction for a single
object, bid functions are monotonic. As a consequence, the revenue
equivalence theorem [21] applies,8 and introducing soft floors in
second-price auctions do not affect either the final allocation or
the advertising service’s revenues. He then demonstrates by way
of examples that, with asymmetric bid distributions, revenues in
a second-price auction with a soft floor can be either higher or
lower than in a standard second-price auction. In this section, we
show that, in a more realistic environment in which types are
multi-dimensional and bidders can choose which queries to target,
different auction formats can yield different revenues even when
bidder types are drawn from the same distribution.

Given a soft floor equal to 𝑠 , the price is determined as follows;
we describe the case of equal click-through rates for simplicity. Let
𝑏 (1) and 𝑏 (2) be the first- and, respectively, second-highest bids. If
𝑏 (2) ≥ 𝑠 , then 𝑝 = 𝑏 (2) , as in a standard second-price auction. If
𝑏 (1) ≥ 𝑠 > 𝑏 (2) , then 𝑝 = 𝑠 , as if 𝑠 was a standard reserve price
(“hard floor”). Crucially, if 𝑠 > 𝑏 (1) , then the high bidder still wins
the auction (on the contrary, with a standard reserve price, the
seller would keep the object) and 𝑝 = 𝑏 (1) .

For completeness, we first consider the symmetric, single-query
environment of §4.1 and simulate an auction with a soft floor equal
to 𝑠 = 0.5. Consistently with Zeithammer [29], we find that soft
floors have virtually no impact on revenues.9

8Intuitively, under different pricing rules, bidding behavior is also different, in a way
that exactly offsets differences in the way prices are computed.
9Results are as follows (compare with Tables 1 and 2): Hedgewith𝑁 = 2 bidders yields
average revenues equal to 0.324 (standard deviation 0.0024); Hedge with 𝑁 = 10

Next, we consider a multi-query environment, which is beyond
the scope of Zeithammer [29]. We assume 𝑁 = 3 bidders, all with
the same set of possible typesT1 = T2 = T3 = {1, 2, 3}. There are two
queries, so𝑄 = {1, 2}. Values and click-through rates for all bidders
are as described in Table 3. Thus, for example, 𝑉𝑖 (2, 1) = 0.25 and
CTR𝑖 (1, 2) = 0.1. Both queries are equally likely, and all types are
also equally likely. To clarify, these parameters are artificial and
purposely chosen to illustrate the point. We let 𝐵 = { 𝑖

20 : 𝑖 =

0, . . . , 20} and 𝑇 = 1, 000, 000.10

Table 3: Values and Click-Through Rates for all bidders

𝜏𝑖 𝑉𝑖 (𝜏𝑖 , 1) CTR𝑖 (𝜏𝑖 , 1) 𝑉𝑖 (𝜏𝑖 , 2) CTR𝑖 (𝜏𝑖 , 2)
1 0.5 0.3 0.25 0.1
2 0.25 0.1 1 0.1
3 0.25 0.1 1 0.2

Table 4 reports expected revenues per impression (where expecta-
tions are taken over search queries, bidder types, and click-through
rates) for EXP3-IX, averaged over 5 runs. Table 5 reproduces the
results for Hedge, with 𝑇 = 400, 000.

Table 4: Multi-query auctions and soft floors, EXP3-IX output
for 𝑇 = 1M, averaged over 5 runs.

Auction format Mean Revenue Std. Dev.
First price 0.0830 0.0007
Second price 0.0509 0.0008
Soft floor 𝑠 = 0.65 0.0813 0.0007

Table 5: Multi-query auctions and soft floors, Hedge output
for 𝑇 = 400K, averaged over 5 runs.

Auction format Mean Revenue Std. Dev.
First price 0.0691 0.0016
Second price 0.0857 0.0001
Soft floor 𝑠 = 0.65 0.0741 0.0061

Our first key finding is that, as anticipated, the three auction
formats yield different expected revenues. Soft-floor reserve prices
can impact revenues; thus, our simulations provide some support to
this common industry practice. Under Hedge, revenues are higher
in soft-floor reserve price auctions than in first-price auctions, but
second-price auctions perform best. With EXP3-IX, second-price
auctions do not fare as well; the highest revenues come from first-
price auctions, with soft-floor pricing behind.

A second key finding is that EXP3-IX results do not align with
Hedge even when run for longer periods. Each panel in Figure 1
shows the frequency of bids in the final 40, 000 periods of the learn-
ing algorithm, summed over 5 runs, divided by type and targeting
clause (i.e., queries actually targeted). The main take-away point
is that every type eventually learns to choose a specific targeting
clause and for the most part also places fairly concentrated bids.

yields 0.834 (7𝑒 − 6); EXP3-IX with 𝑁 = 2 yields 0.377 (0.032); EXP3-IX with 𝑁 = 10
yields 0.774 (0.0176).
10We also ran these simulations with higher values of𝑇 , and similar patterns emerge.
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Figure 1: Bids in second-price auction under Hedge

Now compare with Figure 2, which summarizes predicted bids
for bidder 1 under EXP3-IX, with Figure 1 above (again we sum over
5 runs and only look at the last 100, 000 periods). Type 1 occasionally
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Figure 2: Bidder 1’s bids in second-price auction, EXP3-IX

bids on one or both queries, showing little convergence even after
one million runs. EXP3-IX requires more experimentation, as it
only learns from played actions, while Hedge converges faster but
assumes learning about unplayed actions. This supports the idea
that leveraging knowledge of the pricing mechanism enhances
performance. Hedge outperforms due to its reliance on full reward
information. We suggest that incorporating heuristics into EXP3-IX
may partially address this imbalance; we leave this to future work.

4.3 Inferring values and bid shading
Next, we use our approach to infer the distribution of bidders’
values from the observed distribution of bids. We utilize Hedge for
this inference procedure, due to the bid dispersion observed with
EXP3-IX (§4.2).

The analysis is based on aggregated bid data for two specific
shopper queries in an e-commerce setting, one characterized by low
traffic and the other by high traffic. The data aggregation process
converts all bids into a bid per impression, sowe set all click-through
rates to 1. Thus, we apply our analysis to a symmetric environment
with a single query, unit click-through rates, and two different
scenarios, one with a low number of bidders (low traffic) and one
with a high number of bidders (high traffic).

We normalize all bids to lie in a grid 𝐵 in the interval [0, 4].
Specifically, we take 𝐵 = { 𝑖

10 : 𝑖 = 0, . . . , 40}. We then define the
set of types to be quantiles of the given bid distribution, with a
step size of 0.1. We initialize the procedure by setting the inferred
value distribution to the observed bid distribution. We then apply
multiple iterations of the following procedure. First, we run the
learning algorithm and derive a predicted bid distribution.

Then, we adjust inferred values for each quantile. To do so, we
use the following heuristic. Suppose that, for a given quantile, the

currently inferred value is 𝑣 , the observed bid is 𝑏𝑜 , and the pre-
dicted bid is 𝑏𝑝 . This means that the predicted extent of bid shading
(reducing one’s bid below one’s value) is 𝜎 = 𝑏𝑝

𝑣 . We then update 𝑣
according to 𝑣 ← 𝑣 + 𝛼

(
𝑏𝑜

𝜎 − 𝑣
)
. Finally, since the inferred values

are associated with increasing quantiles, we apply a “flattening”
step to ensure that they are indeed increasing. This completes one
inference iteration. Intuitively, a bidder with value 𝑏𝑜

𝜎 who bids
by applying a shading factor of 𝜎 will bid exactly 𝑏𝑜 , the actually
observed bid for this quantile. We then adjust the inferred 𝑣 in the
direction of 𝑏𝑜

𝜎 , applying a learning rate adjustment 𝛼 = 0.2.
Figure (3) represents the inferred values of bidders for the low-

traffic search query, under the three pricing rules we analyzed in
§4.2: first price, second price, and soft floor with a reserve price of
$0.65. We chose these pricing rules arbitrarily, to demonstrate their
impact on the inference process. We used 8 iterations of the infer-
ence procedure and 3 runs of the learning algorithm per iteration,
each with 𝑇 = 500, 000, averaging bids over the last 50, 000 periods.

As anticipated, we observe bid shading in the first price auction,
as well as within the lower to middle quantiles in the case of the
soft floor. The second price auction also displays bid shading at
lower quantiles. We hypothesize that this deviation from theoretical
prediction is due to a lack of learning amongst low-valuation types:
players with low valuation win rarely, so the feedback they receive
is coarse on most periods and hence insufficient to converge to
bidding one’s value.11
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Figure 3: Value inference in three auction formats for the
low traffic search query.

Figure 4 analyzes the high-traffic query. We increased the simula-
tion length to𝑇 = 800, 000 periods. As one can see, even with a large
number of bidders, inferred values converge in a few iterations12.
11We observe the same pattern of deviations from truthful bidding for low types in
the second-price auction studied in §4.1.
12We used a realistic pricing function, but details are withheld due to confidentiality.
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Figure 4: Inferring values for
the high traffic search query.
In this experiment, we set
𝑇 = 800, 000 and applied 8
inference iterations. The re-
sults show that inferred val-
ues converge in a few itera-
tions even in a more realistic
auction environment.
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5 CONCLUSIONS
Online learning algorithms can serve as effective tools in modeling
bidders in complex ad auctions. We showed that soft floors can have
a positive effect on the ad service’s revenue, even in an ex-ante
symmetric environment. We also demonstrated that the algorithm
choice can significantly affect the learning rate in a more realistic
auction environments, especially with a large number of bidders.
Utilizing our simulation approach, we further inferred bidders’
valuations in the presence of more realistic auction rules. This has
been experimented with aggregated bid data from an e-commerce
website for both low- and high-density auctions.
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6 APPENDIX
6.1 Algorithms
Details of the Hedge and EXP3-IX algorithms are as follows.

Algorithm 1 EXP3-IX for Auctions

Require: parameters 𝜂 > 0, 𝛾 > 0, 𝑁 ,𝑇
Require: action sets𝐴 (the same for all bidders), query distribution 𝐹𝑄
Require: type space T𝑖 and distribution 𝐹𝑖 , and functions 𝑉𝑖 ,CTR𝑖 for each 𝑖 =

1, . . . , 𝑁
for all 𝑖 and 𝑎 ∈ 𝐴, set 𝑙𝑖,𝜏𝑖 ,0 (𝑎) = 0
for 𝑡 = 1, . . . ,𝑇 do

draw 𝑞 ∼ 𝐹𝑄
for 𝑖 = 1, . . . , 𝑁 do {Play}

draw 𝜏𝑖 ∼ 𝐹𝑖
for 𝑎𝑖 ∈ 𝐴 do {Softmax}

set 𝑝𝑖,𝜏𝑖 ,𝑡 (𝑎𝑖 ) =
exp(−𝜂 𝑙𝑖,𝜏𝑖 ,𝑡−1 (𝑎𝑖 ) )∑

𝑎′
𝑖
∈𝐴 exp(−𝜂 𝑙𝑖,𝜏𝑖 ,𝑡−1 (𝑎

′
𝑖
) )

end for
draw 𝑎𝑖,𝜏𝑖 ,𝑡 ∼ 𝑝𝑖,𝜏𝑖 ,𝑡

end for
for 𝑖 = 1, . . . , 𝑁 do {Learning}

compute normalized reward 𝑟𝑖,𝑡 ∈ [0, 1] given 𝑞 and 𝜏𝑖 under the actual bids
𝑎𝑖,𝜏𝑖 ,𝑡 and set

𝑙𝑖,𝜏𝑖 ,𝑡 (𝑎𝑖,𝜏𝑖 ,𝑡 ) = 𝑙𝑖,𝜏𝑖 ,𝑡−1 (𝑎𝑖,𝜏𝑖 ,𝑡 ) +
1−𝑟𝑖,𝑡

𝑝𝑖,𝜏𝑖 ,𝑡 (𝑎𝑖,𝜏𝑖 ,𝑡 )+𝛾
for 𝑎′𝑖 ∈ 𝐴 \ {𝑎𝑖,𝜏𝑖 ,𝑡 } and 𝜏

′
𝑖 ∈ T𝑖 \ {𝜏𝑖 } do

set 𝑙𝑖,𝜏 ′
𝑖
,𝑡 (𝑎′𝑖 ) = 𝑙𝑖,𝜏 ′

𝑖
,𝑡−1 (𝑎′𝑖 )

end for
end for

end for

Algorithm 2 Hedge for Auctions

Require: parameters 𝜂 > 0, 𝑁 ,𝑇
Require: action sets𝐴 (the same for all bidders), query distribution 𝐹𝑄
Require: type space T𝑖 and distribution 𝐹𝑖 , and functions 𝑉𝑖 ,CTR𝑖 for each 𝑖 =

1, . . . , 𝑁
for all 𝑖 , 𝜏𝑖 ∈ T𝑖 , and 𝑎 ∈ 𝐴, set 𝑤𝑖,𝜏𝑖 ,0 (𝑎) = 0
for 𝑡 = 1, . . . ,𝑇 do

draw 𝑞 ∼ 𝐹𝑄
for 𝑖 = 1, . . . , 𝑁 do {Actual play}

draw 𝜏𝑖 ∼ 𝐹𝑖
for 𝑏𝑖 ∈ 𝐴 do {Softmax}

set 𝑝𝑖,𝜏𝑖 ,𝑡−1 (𝑏𝑖 ) =
exp(𝑤𝑖,𝜏𝑖 ,𝑡−1 (𝑏𝑖 )/𝜂)∑

𝑏′
𝑖
∈𝐴 exp(𝑤𝑖,𝜏𝑖 ,𝑡−1 (𝑏

′
𝑖
)/𝜂)

end for
draw 𝑎𝑖,𝜏𝑖 ,𝑡 ∼ 𝑝𝑖,𝜏𝑖 ,𝑡−1

end for
for 𝑖 = 1, . . . , 𝑁 do {Learning}

for 𝑏𝑖 ∈ 𝐴 do
compute reward 𝑟𝑖 given 𝑞 and 𝜏𝑖 , assuming 𝑖 bids 𝑏𝑖 and all 𝑗 ≠ 𝑖 bid
𝑎 𝑗,𝑡

set 𝑤𝑖,𝜏𝑖 ,𝑡
(𝑏𝑖 ) = 𝑤𝑖,𝜏𝑖 ,𝑡−1 (𝑏𝑖 ) + 𝑟𝑖

for 𝜏 ′𝑖 ∈ T𝑖 \ {𝜏𝑖 } do
set 𝑤𝑖,𝜏 ′

𝑖
,𝑡 (𝑏𝑖 ) = 𝑤𝑖,𝜏 ′

𝑖
,𝑡−1 (𝑏𝑖 )

end for
end for

end for
end for

https://openreview.net/forum?id=YHdeAO61l6T
https://openreview.net/forum?id=YHdeAO61l6T

	Abstract
	1 Introduction
	1.1 Related Literature

	2 Auction Model
	3 Learning Models
	3.1 Model Setup for Auction Environment

	4 Empirical Results
	4.1 Standard auctions
	4.2 Soft floors
	4.3 Inferring values and bid shading

	5 Conclusions
	References
	6 Appendix
	6.1 Algorithms


