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ABSTRACT
We study the task of performing hierarchical queries based on sum-

mary reports from the Attribution Reporting API for ad conversion

measurement. We demonstrate that methods from optimization and

differential privacy can help cope with the noise introduced by pri-

vacy guardrails in the API. In particular, we present algorithms for

(i) denoising the API outputs and ensuring consistency across differ-

ent levels of the tree, and (ii) optimizing the privacy budget across

different levels of the tree. We provide an experimental evaluation

of the proposed algorithms on public datasets.
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1 INTRODUCTION
Over the last two decades, third-party cookies [25] have been es-

sential to online advertising, and particularly to ad conversion

measurement, whereby an ad impression (e.g., a click or a view)

on a publisher site or app could be joined to a conversion on the

advertiser, in order to compute aggregate conversion reports (e.g.,

the number of conversions attributed to a subset of impressions)

or to train ad bidding models (e.g., [8, 16, 18, 22]). However, in

recent years, privacy concerns have led several browsers to decide

to deprecate third-party cookies, e.g., [23, 26, 27]. The Attribution
Reporting API [1, 21] seeks to provide privacy-preserving ways for

measuring ad conversions on the Chrome browser and the Android

mobile operating system. This API relies on a variety of mech-

anisms for limiting the privacy leakage, including bounding the

contributions to the output reports of the conversions attributed
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to each impression, as well as noise injection to satisfy differential

privacy (for more details, see Section 2).

We study the conversion reporting task, where a query consists

of counting the number of conversions attributed to impressions

such that some features of the conversion and the impression are

restricted to certain given values. In particular, we focus on the

hierarchical queries setting where the goal is to estimate the num-

ber of conversions attributed to impressions where the features

are restricted according to certain nested conditions. Consider the

example in Figure 1, where we wish to estimate the number of:

• Conversions attributed to impressions from campaign 123.

• Conversions that are also restricted to take place in New York.

• Conversions that are further restricted to occur on a Friday.

In general, the goal is to estimate the conversion count for each

node in a given tree, similar to the one in Figure 1.

Such estimates can be obtained using summary reports from the

Attribution Reporting API, as discussed in Section 2.2. In this work,

we present a linear-time post-processing algorithm that denoises

the estimates for different nodes that are returned by the API and

ensures that the estimates are consistent with respect to the tree

structure. We also show that our algorithm is optimal among all

linear unbiased estimators for arbitrary trees, extending results

for regular trees [9, 17] (Section 4). Since the API allows the ad-

tech to allocate a privacy budget across different measurements

containing contributions from the same impression, we provide

an algorithm for optimizing the allocation of the privacy budget

across the different levels of the tree (Section 5).

We start by recalling in Section 2 the basics of differential privacy

and summarizing the query model for summary reports in the

Attribution Reporting API. In Section 3, we formally define the

optimization problem that we seek to solve. In Section 6, we provide

an experimental evaluation of our algorithms on two public datasets.

We conclude with some future directions in Section 7.

2 PRELIMINARIES
2.1 Differential Privacy (DP)
Let 𝑛 be the number of rows in the dataset and let X be the (ar-

bitrary) set representing the domain of values for each row. We

distinguish two types of columns (a.k.a. attributes): known and un-
known. We also assume knowledge of the set of possible values that

each unknown attribute can take.

Definition 2.1 (DP [11]). For 𝜀 ≥ 0, an algorithm A is 𝜀-DP if for

every pair𝑋,𝑋 ′ of datasets that differ on the unknown attributes of
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Figure 1: Example of Hierarchical Queries.

one row
1
, and for every possible output 𝑜 , it holds that Pr[A(𝑋 ) =

𝑜] ≤ 𝑒𝜀 · Pr[A(𝑋 ′) = 𝑜].

Lemma 2.2 (Basic Composition). Let A be an algorithm that
runs 𝑘 algorithms A1, . . . ,A𝑘 on the same dataset such that A𝑖 is
𝜀𝑖 -DP with 𝜀𝑖 ≥ 0 for each 𝑖 ∈ [𝑘]. Then, A is (∑𝑘

𝑖=1 𝜀𝑖 )-DP.

Lemma 2.3 (Post-processing). Let 𝜀 > 0, and 𝑅 and 𝑅′ be any
two sets. IfA : X𝑛 → 𝑅 is an 𝜀-DP algorithm, and 𝑓 : 𝑅 → 𝑅′ is any
randomized mapping, then (𝑓 ◦ A) : X𝑛 → 𝑅′ is 𝜀-DP.

For an extensive overview of DP, we refer the reader to the mono-

graph [12]. A commonly used method in DP is the discrete Laplace

mechanism. To define it, we recall the notion of ℓ1-sensitivity.

Definition 2.4 (ℓ1-sensitivity). LetX be any set, and 𝑓 : X𝑛 → R𝑑
be a 𝑑-dimensional function. Its ℓ1-sensitivity is defined as Δ1 𝑓 :=

max𝑋,𝑋 ′ ∥ 𝑓 (𝑋 ) − 𝑓 (𝑋 ′)∥1, where 𝑋 and 𝑋 ′ are two datasets that

differ on the unknown attributes of a single row.

Definition 2.5 (Discrete Laplace Mechanism). The discrete Laplace
distribution centered at 0 and with parameter 𝑎 > 0, denoted by

DLap(𝑎), is the distribution whose probability mass function at

integer 𝑘 is
𝑒𝑎−1
𝑒𝑎+1 ·𝑒

−𝑎 |𝑘 |
. The 𝑑-dimensional discrete Laplace mecha-

nism with parameter 𝑎 applied to a function 𝑓 : X𝑛 → Z𝑑 , on input

a dataset 𝑋 ∈ X𝑛 , returns 𝑓 (𝑋 ) + 𝑍 where 𝑍 is a 𝑑-dimensional

noise random variable whose coordinates are sampled i.i.d. from

DLap(𝑎).

Lemma 2.6. For every 𝜀 > 0, the 𝑑-dimensional discrete Laplace
mechanism with parameter 𝑎 ≤ 𝜀/Δ1 𝑓 is 𝜀-DP.

2.2 Attribution Reporting API
The aggregatable reports [1] are constructed as follows:

• Impression (a.k.a. source) registration: The API provides a
mechanism for the ad-tech to register an impression (e.g., a click

or view) on the publisher site or app. During registration, the

ad-tech can specify impression-side aggregation keys (e.g., one

corresponding to the campaign or geo location).

• Conversion (a.k.a. trigger) registration: The API also pro-

vides a mechanism for the ad-tech to register a conversion on

1
We note that this instantiation of the DP definition is related to the label DP setting in

machine learning [7, 13–15], where the features of an example are considered known

and only its label is deemed unknown and sensitive. In our use case, there might be

multiple unknown attributes, whose concatenation is treated in a conceptually similar

way to the label in the label DP setting.

Impression
(campaign = 123, location = New York)

aggregation_keys:
“Level 1: campaign”: “123”

“Level 2: campaign, location”: “123, New York”

“Level 3: campaign, location,”: “123, New York, ”

Ad-tech
Publisher

Conversion
(conversion_day = Friday)

aggregatable_trigger_data:
key_piece: “”, source_key: “Level 1: campaign”

key_piece: “”, source_key: “Level 2: campaign, location”

key_piece: “Friday”, source_key: “Level 3: campaign, location,”

aggregatable_values:
“Level 1: campaign”: 21845

“Level 2: campaign, location”: 21845

“Level 3: campaign, location,”: 21845
Ad-tech
Advertiser

Histogram Contributions

key: “123”, value: 21845

key: “123, New York”, value: 21845

key: “123, New York, Friday”, value: 21845

Browser

Figure 2: Histogram Contributions Generation.

the advertiser site or app. As it does so, the ad-tech can specify

conversion-side key pieces along with aggregatable values cor-

responding to each setting of the impression-side aggregation

keys. E.g., a conversion-side key piece could capture the con-

version type or (a discretization of) the conversion timestamp.

The combined aggregation key (which can be thought of as the

concatenation of the impression-side aggregation key and the

conversion-side key piece) is restricted to be at most 128 bits.

The aggregatable value is required to be an integer between 1

and the 𝐿1 parameter of the API, which is set to 2
16 = 65,536.

• Attribution: The API supports last-touch attribution where the

conversion is attributed to the last (unexpired) impression regis-

tered by the same ad-tech. (The API supports a broader family of

single-touch attribution schemes allowing more flexible prioriti-

zation over impressions and conversions; we do not discuss this

aspect any further as it is orthogonal to our algorithms.
2
)

• Histogram contributions generation: The API enforces that
the sum of contributions across all aggregatable reports gener-

ated by different conversions attributed to the same impression

is capped to at most the 𝐿1 = 2
16

parameter. An example con-

struction of histogram contributions is in Figure 2. While in this

example the conversion key piece depends only on conversion in-

formation (the conversion day), it can be replaced by an attribute

that depends on both impression and conversion information

(e.g., a discretization of the difference between impression time

and conversion time); this can be done using filters [4].

At query time, a set of histogram keys is requested by the ad-tech

[6]. (The set of keys that are queried could be set to the Cartesian

product of all known values of the impression-side features with

the set of all possible values of the conversion-side features.) The
aggregatable reports are combined in the aggregation service to pro-

duce a summary report by applying the discrete Laplace mechanism

(Definition 2.5) with parameter 𝜀/𝐿1 to the requested aggregation

keys. This report satisfies 𝜀-DP where each row of the dataset cor-

responds to an impression and its attributed conversions if any

2
TheAPImoreover enforces a set of rate limits on registered impressions, and attributed

conversions; we omit discussing these since they are not essential to the focus of this

paper. We refer the interested reader to the documentation [2].
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(see Table 1 for an example
3
), and where the known columns in

Definition 2.1 are the attributes that only depend on impression

information (campaign and location in Table 1).

Click campaign location conversion day

1 123 Paris Monday

2 456 Chicago Friday

3 789 London *

4 123 New York Friday

· · · · · · · · · · · ·
Table 1: Dataset Post-Attribution and Pre-Aggregation.

In the hierarchical aggregation setting, each node of the tree

corresponds to an aggregation key, and the level of the node is

(implicitly) specified in the impression-side aggregation key and/or

in the conversion-side key piece (as shown in Figure 2).

For the use case of estimating conversion counts, the aggregat-

able value could be set so as to increment the count by +1. Since the
scale of the noise injected in summary reports is 𝐿1/𝜀, the ad-tech
can improve accuracy by setting the contribution of an increment

to +𝐿1 instead of +1 (and then scaling down the value it receives

from the aggregation service by 𝐿1). If the 𝐿1 contribution has to

be divided across multiple keys, the contribution of each increment

needs to be scaled down accordingly. E.g., in Figure 2, since each

impression affects 3 keys, the contribution is set to ⌊𝐿1/3⌋ = 21, 845.

3 OPTIMIZATION PROBLEM
3.1 Hierarchical Query Estimation
We formally define the hierarchical query estimation problem. Given

a dataset 𝑋 , consider a tree where each node corresponds to the

subset of the rows of 𝑋 , conditioned on the values of some of

the attributes. We consider the setting where each level of the tree

introduces a conditioning on the value of a new attribute. For known
attributes, the child nodes of a node correspond to the different

values taken by that attribute in 𝑋 within the rows. For unknown
attributes, the child nodes correspond to all possible values for

that attribute, whether or not they actually occur in the dataset.

Given this tree, the problem is to privately release the approximate

number of data rows corresponding to each node that have an

attributed conversion.

3.2 Error Measure and Consistency
We consider the following error measure, which is defined in [20].

Definition 3.1 (RMS Relative Error at Threshold). For a count 𝑐 ≥ 0,

and its randomized estimate 𝑐 ∈ R, the Root Mean Squared Rel-
ative Error at Threshold 𝜏 when estimating 𝑐 by 𝑐 is defined as

RMSRE𝜏 (𝑐, 𝑐) :=

√︄
E

[(
|𝑐−𝑐 |

max(𝜏,𝑐 )

)
2

]
, where the expectation is over

the randomness of 𝑐 .

3
The

∗
in the conversion-related field in Table 1 indicates that the click corresponding

to that row did not get an attributed conversion.

Suppose we have the count estimates (e.g., the number of con-

versions as in Figure 1) at every node in a tree. Each conversion

contributes to the count for multiple nodes. For example, a con-

version for ad campaign 123 that occurs on a Friday in New York

contributes to the 6th leaf from the left, but also to each of its ances-

tor nodes. This imposes relationships among the counts at various

nodes. If the only geo locations with conversions attributed to ad

campaign 123 on Friday are New York and Chicago, then the total

number of such conversions must equal the sum of the number

of such conversions in each of the two locations. More generally,

the count for any node must equal the sum of the counts for its

children. An estimator with this property is called consistent.
For a tree𝑇 with levels 𝐿0, . . ., 𝐿𝑑 , with 𝐿𝑖 being the set of nodes

at level 𝑖 , and estimators 𝑐𝑣 of the counts 𝑐𝑣 at each node 𝑣 , define

the tree error to be

RMSRE𝜏 (𝑇 ) :=

√√√√
1

𝑑 + 1

𝑑∑︁
𝑖=0

©« 1

|𝐿𝑖 |
∑︁
𝑣∈𝐿𝑖

RMSRE𝜏 (𝑐𝑣, 𝑐𝑣)2ª®¬ .
The goal of the hierarchical query estimation problem is to pri-

vately estimate the counts of every node with minimum possible

tree error, where the estimates should be consistent. To achieve this,

we will employ post-processing and privacy budgeting strategies.

4 POST-PROCESSING ALGORITHMS
Directly applying the discrete Laplace mechanism to add indepen-

dent noise to each node does not result in a consistent estimate.

Consistency can be achieved by estimating only the counts of leaves

and inferring the count of each nonleaf by adding the counts of its

leaf descendants, but this can lead to large error for nodes higher

up in the tree. Alternatively, one can achieve consistency by post-

processing independent per-node estimates. Since DP is preserved

under post-processing (Lemma 2.3), this comes at no cost to the

privacy guarantee, and it can substantially improve accuracy.

Since the count of any node must equal the sum of the counts of

its children, we can obtain a second independent estimate of the

count of any nonleaf node by summing the estimates of its children.

We can combine these two estimates to obtain a single estimate of

lower variance. Extending this observation, Hay et al. [17] and Cor-

mode et al. [9] give efficient post-processing algorithms for regular

(every non-leaf has the same number of children) and balanced (ev-

ery leaf is at the same depth) trees, achieving consistency and also

a substantial improvement in accuracy. In particular, estimating the

counts of each node can be expressed as a linear regression problem,

and these algorithms compute the least-squares solution, which is

known to achieve optimal error variance among all unbiased linear

estimators. Moreover, this special case of least-squares regression

can be solved in linear time.

We generalize this algorithm to arbitrary trees. This allows us to

handle trees with different fanouts at different levels or even at dif-

ferent nodes in the same level, which is the case for the conversion

reporting trees we study. See Algorithm 1.

The algorithm comprises two linear-time passes. The first pass

proceeds bottom-up from the leaves to the root. For each node it

computes the optimal convex combination of the direct estimate

at that node and the recursively computed estimates at each of

its children, where the weights of the convex combination are
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Algorithm 1 Post-processing for denoising & consistency

Params: Tree 𝑇 , variance 𝑣𝑎𝑟𝑣 for estimates of node 𝑣 .

Input: Estimated counts 𝑥𝑣 for each node 𝑣 in the tree.

Output: De-noised estimates 𝑦𝑣 for each node 𝑣 in the tree.

for 𝑣 ∈ 𝑇 : let 𝑧𝑣 ← 𝑥𝑣 and 𝑣𝑎𝑟 𝑣 ← 𝑣𝑎𝑟𝑣 .

# Bottom-up pass through nonleaf nodes
for each internal node 𝑣 from largest to smallest depth do
Let 𝑐ℎ_𝑣𝑎𝑟𝑣 ←

∑
𝑢∈child(𝑣) 𝑣𝑎𝑟𝑢 and 𝑐ℎ_𝑧𝑣 ←

∑
𝑢∈child(𝑣) 𝑧𝑣

Let 𝑧𝑣 ← 𝑐ℎ_𝑣𝑎𝑟𝑣
𝑣𝑎𝑟𝑣+𝑐ℎ_𝑣𝑎𝑟𝑣 · 𝑧𝑣 +

𝑣𝑎𝑟𝑣
𝑣𝑎𝑟𝑣+𝑐ℎ_𝑣𝑎𝑟𝑣 · 𝑐ℎ_𝑧𝑣 .

Let 𝑣𝑎𝑟 𝑣 ← 𝑣𝑎𝑟𝑣 ·𝑐ℎ_𝑣𝑎𝑟𝑣
𝑣𝑎𝑟𝑣+𝑐ℎ_𝑣𝑎𝑟𝑣 .

# Top-down pass through nonroot nodes
Let 𝑦𝑟 ← 𝑧𝑟 , where 𝑟 is the root.

for each non-root node 𝑣 from smallest to largest depth do
Let 𝑝 ← parent(𝑣)
Let 𝑦𝑣 ← 𝑧𝑣 + 𝑣𝑎𝑟 𝑣

𝑐ℎ_𝑣𝑎𝑟𝑝
· (𝑦𝑝 − 𝑐ℎ_𝑧𝑝 )

return (𝑦𝑣)𝑣∈𝑇

inversely proportional to the variances. This improves the error

of the estimate at each node. The second pass proceeds top-down

from the root to the leaves and can be thought of as a projection

step. For each node it computes the difference between the estimate

at that node and the sum of the estimates of its children, and divides

this difference equally among the children. This directly achieves

consistency, as well as further reduces the error of the estimates.

This procedure not only reduces the variance of each estimate but

also achieves the best possible among all unbiased linear estimators.

Theorem 4.1 (Optimality of Post-Processing). For every 𝑣 ∈
𝑇 , 𝑦𝑣 is the best linear unbiased estimator (BLUE) of the count 𝑐𝑣 . In
particular, among all linear unbiased estimators, (𝑦𝑣)𝑣∈𝑇 minimizes
RMSRE𝜏 ((𝑐𝑣)𝑣∈𝑇 , (𝑦𝑣)𝑣∈𝑇 ).

This extends the results from [9, 17], which work only for regular

trees, to arbitrary trees. Similar to their proofs, the theorem above

follows once we show that the (appropriately scaled) estimates

(𝑦𝑣)𝑣∈𝑇 are an ordinary least squares estimator (OLS) of the counts

(𝑐𝑣)𝑣∈𝑇 . Proving the latter boils down to showing that the estimates

satisfy the two conditions in the following lemma:

Lemma 4.2. For any𝑇, (var𝑣)𝑣∈𝑇 and (𝑥𝑣)𝑣∈𝑇 , let𝑦𝑣 be the output
of Algorithm 1. Then, the following hold:
• (Consistency) For every internal node 𝑣 , 𝑦𝑣 =

∑
𝑢∈child(𝑣) 𝑦𝑢 .

• (Weighted Root-to-Leaf Sum Preservation) For every leaf 𝑣 ,∑
𝑢∈anc(𝑣)

𝑥𝑢
var𝑢

=
∑
𝑢∈anc(𝑣)

𝑦𝑢
var𝑢

,where anc(𝑣) denotes the nodes
on the path from 𝑣 to 𝑟 (inclusive).

The proof of Lemma 4.2 is by induction on the number of nodes

in the tree. The inductive step is done by selecting a node whose

children are all leaves and “coalescing” all of the node’s children.

We omit the full proof from this version due to space constraints.

5 PRIVACY BUDGETING OVER TREE LEVELS
To allocate the privacy budget across the levels of the tree, the

simplest approach is to divide it equally among the levels, or to put

all of the budget on the lowest level. However, basic composition

(Lemma 2.2) allows us to allocate the privacy budget arbitrarily

among the nodes of the tree, and we can apply post-processing

(Algorithm 1) to noisy initial estimates with unequal variances

as well. This motivates the question of whether we can improve

accuracy with an unequal privacy budget allocation, and if so, how.

Given the true counts 𝑐 , we give a greedy iterative approach

for optimizing the privacy budget allocation. Let 𝑘 be a number

of phases (e.g., 𝑘 = 20) corresponding to the granularity of the

allocation. Initially allocate zero (or infinitesimal) privacy budget

to each level, and divide the (remaining) privacy budget into 𝑘

units of size 𝜀/𝑘 . In each of 𝑘 phases, select the level that would

result in the lowest RMSRE𝜏 (𝑇 ) when using 𝜀/𝑘 additional privacy

budget, and increase the privacy budget of that level by 𝜀/𝑘 . The
error RMSRE𝜏 (𝑇 ) can be estimated empirically, or computed di-

rectly using the variance of each post-processed estimate 𝑐𝑣 , which

can be computed using an extension to Algorithm 1; due to space

constraints, we defer the details to the full version.

Using the true counts to optimize the privacy budget allocation

can leak sensitive information and violate the privacy guarantee,

and is infeasible in the API. Instead of using the true counts 𝑐

to allocate the privacy budget, one can use alternatives such as

simulated data, or historical data that is not subject to the privacy

constraints (e.g., before third-party cookie deprecation), or noisy

historical data that has already been protected with DP (e.g., the

output of the API over data from a previous time period). We refer

to this family of privacy budget optimization methods as prior-
based. When no such alternatives are available, one could start out

with a suboptimal privacy budgeting strategy (e.g., uniform privacy

budgeting across levels) and improve the allocation over time.

6 EXPERIMENTAL EVALUATION
We evaluate the algorithms on two public ad conversion datasets.

Criteo Sponsored Search Conversion Log (CSSCL) Dataset [24].
This dataset consists of 15,995,634 points obtained from a sample of

90-day logs of live traffic from Criteo Predictive Search. Each point

contains information on a user action (e.g., a click on an ad) and a

potential subsequent conversion (purchase of the corresponding

product) within a 30-day attribution window. We consider the fol-

lowing attributes: partner_id, product_country, device_type,
product_age_group, and Time_delay_for_conversion. The last
attribute is discretized into 2-day (or 6-day) buckets so that there

are at most 15 (5 respectively) possible values of the rounded time

delay. The first 4 attributes are considered known (they only relate

to the impression), whereas the last is considered unknown. For the
discretization into 6-day buckets, we retain the unknown attribute

and 3 known attributes instead of 4 (omitting product_age_group),
resulting in a depth 4 tree (instead of depth 5).

In Figure 3, we plot RMSRE𝜏 versus 𝜀 for various different meth-

ods evaluated on the later 45 days of data, namely,

• Equal privacy budget split across levels with no post-processing.

• Equal privacy budget split across levels with post-processing.

• All privacy budget on leaves with post-processing.

• Prior-based optimized privacy budget split across levels opti-

mized for each partner_id with no post-processing.

• Prior-based optimized privacy budget split across levels opti-

mized for each partner_id with post-processing.
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(c) 𝜏 = 5, depth 4 tree
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Figure 3: RMSRE𝝉 (𝑻 ) vs 𝜺 for 𝝉 ∈ {5, 10} on CSSCL dataset, with noisy prior obtained via equal budget split and 𝜺 = 1.

For the prior-based privacy budget split optimization, the privacy

budgeting was performed using a noisy prior computed on the first

45 days (privately estimated with 𝜀 = 1 and an equal privacy budget

split over levels). For partner_id’s that appear only in the later

45 days, the prior is computed on all the partner_id’s that appear
in the first 45 days of data. E.g., for 𝜀 = 4 and the depth 5 tree,

RMSRE10 ≈ 0.1, and for the depth 4 tree, RMSRE5 ≈ 0.17.

Criteo Attribution Modeling for Bidding (CAMB) Dataset [19]. It
consists of ∼ 16𝑀 impressions from 30 days of Criteo live traf-

fic. We consider last-touch attribution, and impression attributes:

campaign, categorical features cat1, cat8, and a discretization of

conversion delay, i.e., the difference between conversion_timestamp
and (impression) timestamp. As for CSSCL, we consider two dis-

cretizations for the difference, with two tree depths. Figure 4 shows

the plots for CAMB. The privacy budgeting was performed similarly

to CSSCL but with the noisy prior computed on the first 15 days. For

𝜀 = 4 and the depth 4 tree, RMSRE10 ≈ 0.19, and for the depth 3 tree

(omitting attribute cat8), RMSRE5 ≈ 0.20 and RMSRE10 ≈ 0.12.

Our prior-based budgeting with post-processing method equals

or outperforms all other approaches in each setting (Figures 3 and 4).

7 CONCLUSION AND FUTURE DIRECTIONS
In this work, we studied hierarchical querying of the Attribution

Reporting API, and presented algorithms for consistency enforce-

ment and privacy budgeting, demonstrating their performance on

two public ad datasets. We next discuss some interesting future

directions. We focused on the so-called OPC (“one per click”) setting

where each impression gets at most a single attributed conversion.

An important direction is to consider the extension to the more

general MPC (“many per click”) setting where an impression can

get multiple attributed conversions. It would also be interesting to

extend our treatment of conversion counts to the task of estimating

conversion values. While the error is small for values of 𝜖 around

16 in our evaluation, we note that this is specific to the datasets

and the (restricted) functionality that we study (i.e., conversion

counts with OPC). Achieving small errors on additional function-

alities (e.g., MPC or conversion values) will likely require larger

values of 𝜖 . Another natural direction is to extend the consistency

enforcement algorithm to ensure monotonicity (i.e., that the output

estimate for a node of the tree is at least the output estimate for any

of its children), and non-negativity. Our privacy budgeting method

optimizes for one privacy parameter per-level of the tree; it would
be good to explore the extent to which per-node privacy budgeting

can yield higher accuracy. While we considered data-independent
weights when defining the tree error in terms of the node errors,

there could be situations where data-dependent weights are prefer-
able, e.g., to avoid the tree error being dominated by the error in

many nodes with no conversions, while being insensitive to the

error of few nodes where most of the conversions occur. Another
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(a) 𝜏 = 5, depth 4 tree
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(c) 𝜏 = 5, depth 3 tree
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Figure 4: RMSRE𝝉 (𝑻 ) vs 𝜺 for 𝝉 ∈ {5, 10} on CAMB dataset with noisy prior obtained via equal budget split and 𝜺 = 1.

interesting direction to study privacy budgeting under approxi-

mate DP [10]. Our work considered the hierarchical query model;

a natural direction is to optimize the direct query model [5]. Finally,
the Attribution Reporting API also offers event-level reports [3]. It
would be interesting to see if these could be also used to further

improve the accuracy for hierarchical queries.
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