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ABSTRACT
A well-known algorithm in privacy-preserving ML is differentially
private stochastic gradient descent (DP-SGD). While this algorithm
has been evaluated on text and image data, it has not been previ-
ously applied to ads data, which are notorious for their high class
imbalance and sparse gradient updates. In this work we apply DP-
SGD to several admodeling tasks including predicting click-through
rates, conversion rates, and number of conversion events, and eval-
uate their privacy-utility trade-off on real-world ads datasets. Our
work is the first to empirically demonstrate that DP-SGD can pro-
vide both privacy and utility for ad modeling tasks.
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1 INTRODUCTION
With increasing focus on privacy on the Web and mobile apps, and
given the signal loss due to cookie deprecation by several platforms,
there has been a great need for privacy-preserving ML methods
applied to ad prediction tasks. The most widely used predictive
models in digital advertising are typically trained on user data per-
taining to one or multiple sites/apps, and are used by ad technology
providers (Ad Techs) to optimize the placement of digital ads.

Differential Privacy (DP) [11, 12] has emerged as a popular notion
of privacy that is extensively studied in the research community and
widely deployed in industrial applications, especially for training
ML models with provable privacy guarantees. The main goal of DP
training in ad modeling is to mitigate the privacy risks. For instance,
the training examples for ad prediction models often depend on
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cross-site information. In the absence of privacy guardrails, the
weights of the trained model could reveal, e.g., the browsing history
of users. Such leakage of user information present in the training
data is mitigated by DP training methods. Intuitively, DP achieves a
trade-off between privacy and utility by allowing statistical analysis
and learning based on population-wide properties, while limiting
the influence of (private) information from any individual user on
the final output or model.

A training algorithm takes the set of examples as the input and
produces the (trained weights of the) model as the output. For deep
learning, various algorithms were proposed to privatize a learning
pipeline, such as PATE [32, 33] and DP-FTRL [21]. But the most
widely used generic algorithm is DP stochastic gradient descent
(DP-SGD) [36], which goes back to the work of Abadi et al. [1]. We
focus on DP-SGD in this paper. At a high level, DP-SGD works by
clipping the norm of the per-example gradient to limit the influence
of each example, and then adding Gaussian noise to the mini-batch
averaged gradient to achieve DP. Since most deep neural network
models are trained using SGD or variants such as Adam, DP-SGD
can be adapted to any existing training pipeline with minimum
modification by just replacing the optimizer.

However, a direct application of DP-SGD can lead to significant
utility (i.e., accuracy) loss and a large computational overhead, in
practice. In fact, until recently, it was not clear if DP-SGD was
suitable for large-scale deep learning. Recent studies and success
stories mostly focused on vision [8, 24] and text [2, 35] problems.

In this work, we present a systematic study of DP-SGD on ad
prediction tasks. These tasks have highly unbalanced label distri-
butions, categorical features with extremely sparse signals, and
models with large embedding layers. Such properties make ads pre-
diction more challenging than many other tasks. These difficulties
meant that DP-SGD was commonly considered infeasible except
for trivially large privacy budgets. In contrast, we demonstrate that
it is possible to train private models with DP-SGD with only a small
utility drop even in the high privacy regime. For example, for a
click-through prediction task, the AUC loss is increased by only
15.8% relative to a non-private baseline (0.1943 → 0.2250) even at
a privacy budget of 𝜀 = 0.5. Furthermore, we show that with care,
the computation and memory overheads of DP-SGD can be made
almost identical to that of non-private training.

We will discuss the ideas that make these results possible, such as
large batch training, efficient per-example gradient norm bounding,
and improved privacy accounting. We also provide a comparison
of DP-SGD to LabelDP [13, 29], a DP notion that protects only the
labels and not the features. To the best of our knowledge, ours is
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Table 1: DP-SGD results (average over five runs) on three
different ads prediction datasets. Each row show the results
under a specific privacy budget 𝜀. It is common [1, 20, 26] to
set 𝛿 = O(1/𝑁 ), where 𝑁 is the number of training examples.
In this paper, we fix 𝛿 = 1/𝑁 . The percentages are relative
loss increment calculated as (𝐿𝜀 −𝐿∞)/𝐿∞, where 𝐿𝜖 is the loss
for the (𝜖, 𝛿)-DP model and 𝐿∞ is the loss for the non-private
(𝜀 = ∞) baseline. We use AUC loss (i.e., 1−AUC) for pCTR and
pCVR, and Poisson log loss for pConvs.

Privacy Budget Relative Loss Increment (%)
(𝜀) pCTR pCVR pConvs

0.5 16.11 9.99 97.04
1.0 13.58 9.51 85.71
3.0 8.77 8.55 68.19
5.0 7.40 7.84 67.14
10.0 6.27 7.28 60.64
30.0 5.67 6.45 46.00
50.0 5.56 5.84 41.20

the first systematic study on training large deep neural networks
privately for ad prediction tasks. We hope our results serve as
an optimistic example towards DP training of large ad prediction
neural networks. We also hope our detailed studies provide useful
information for practitioners to improve the utility and minimize
the overhead of DP training.

2 BACKGROUND
Let A be a (stochastic) training algorithm that produces a model
given a labeled training set. We call two training sets neighboring
if they differ on a single labeled example.

Definition 2.1 (Differential Privacy). Let 𝜀 ≥ 0, 𝛿 ∈ [0, 1]. A ran-
domized training algorithm A is (𝜀, 𝛿)-differentially private ((𝜀, 𝛿)-
DP) if for all 𝑆 ⊆ Range(A) and all neighboring training sets 𝐷,𝐷′,
it holds that

Pr[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[A(𝐷′) ∈ 𝑆] + 𝛿.

DP-SGD [1] is the most widely used DP training algorithm for a
deep learning pipeline. Let 𝑓𝜃 be a neural network with trainable
weights 𝜃 , and {(𝑥1, 𝑦1), . . . , (𝑥𝐵, 𝑦𝐵)} be a random mini-batch of
training examples. Let ℓ𝑖 = ℓ (𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖 ) be the loss on the 𝑖th ex-
ample and let ℓ̄ = 1

𝐵

∑𝐵
𝑖=1 ℓ𝑖 be the average loss. Standard training

algorithms compute the average gradient ∇𝜃 ℓ̄ and update 𝜃 with
an optimizer such as SGD or Adam. In DP-SGD, the per-example
gradients ∇𝜃 ℓ𝑖 are computed, and then rescaled to have a maxi-
mum ℓ2-norm 𝐶 . The average of the norm-bounded per-example
gradients is perturbed by adding independent Gaussian noise to
each coordinate, and is subsequently passed to the optimizer. The
privacy parameters 𝜀 and 𝛿 depend on the noise multiplier, and
other parameters such as the batch size and training steps; they can
be estimated via privacy accounting [1].

3 SUMMARY OF MAIN RESULTS
We focus on three common predictions tasks for which Ad Techs
build ML models.

• pCTR: predict the click-through rate for an ad.
• pCVR: predict the conversion rate for an ad click; here, only
whether a conversion takes place matters, regardless of the num-
ber of conversions.

• pConvs: predict the expected number of conversions after an ad
click; this is a regression problem against integer count labels.

We evaluate pCTR on the public Criteo dataset [7], and pCVR,
pConvs on a proprietary dataset. We train the binary classification
problems on pCTR and pCVRwith the binary cross entropy loss and
report the test AUC loss (i.e., 1 − AUC), and the regression problem
on pConvs with the Poisson log loss (PLL), and report the test PLL.
Let 𝑓𝜃 (𝑥) be the scalar prediction (i.e., the logit value) of the neural
network, and 𝑦 be the integer counting label. PLL is defined as
ℓ (𝑓𝜃 , (𝑥,𝑦)) := exp(𝑓𝜃 (𝑥)) − 𝑦𝑓𝜃 (𝑥). In all our experiments with
(𝜀, 𝛿)-DP, we set 𝛿 to be 1/𝑁 , where 𝑁 is the number of training
examples in the dataset.

The percentage increases in loss at various privacy budgets are
presented relative to a non-private baseline1 in Table 1. We found
DP-SGD can properly train the models for all three tasks with a
reasonable loss gap, even for very high privacy (e.g., 𝜀 < 1) regimes.
Furthermore, when implemented carefully, the computation and
memory overheads can be minimized, allowing a training through-
put similar to the non-private baseline. Next, we present in detail
the techniques that enabled optimal privacy-utility trade-off and
minimum memory/computation overhead, respectively.

4 PRIVACY-UTILITY TRADE-OFF
One of the main obstacles for adopting DP-SGD in real-world deep
learning pipelines is the potential deterioration of the model perfor-
mance. Norm-rescaling and Gaussian noise introduce, respectively,
bias and variance to gradient estimation. As a result, the trained
models have lower performance. In this section, we study these
challenges in detail by using the training setup from the non-private
baseline as the starting point, and describe various improvements
that lead to our main results. We state our results for Criteo pCTR,
but the key points also hold on other prediction tasks.

4.1 Hyperparameter Tuning
The hyperparameters for training the non-private baseline models
in real-world applications are typically extensively tuned. However,
those hyperparameters are not necessarily the best for training with
DP. Figure 1 plots the AUC of DP trained models under different
optimizer and learning rate configurations. Specifically, the blue
line shows that directly reusing the optimal hyperparameters for
the non-private baseline leads to significant utility gap comparing
to the best hyperparameters re-tuned under DP training. Note that
the optimal hyperparameters also depend on 𝜀: SGD with learning
rate 0.1 performs better than with learning rate 0.01 in the low
privacy (large 𝜀) regime but worse in the high privacy (small 𝜀)
regime. For simplicity, we choose a single configuration (SGD-0.01)

1Our non-private AUC loss for the pCTR task is 0.1943. We are unable to report the
absolute non-private baseline losses for pCVR and pConvs on the proprietary datasets
due to confidentiality.
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Figure 1: AUC under different (optimizer, learning rate) com-
binations on Criteo pCTR. Each dot is the average test AUC
of 5 random runs with a specific combination of 𝜀, optimizer,
and learning rate.We evaluate the following optimizers: SGD,
Yogi [41], Adagrad [10], Adam [22], AdamW [28]; and learn-
ing rates: 0.001, 0.01, 0.1. The blue line (Yogi-0.01) is with the
optimal hyperparameters used in the non-private baseline.

Table 2: AUC under different per-example norm bound (𝐶)
and privacy budget (𝜀) on Criteo pCTR.

𝜀 𝐶 = 1.0 𝐶 = 3.0 𝐶 = 30.0

0.5 .7498 ± .0011 .7441 ± .0014 .5000 ± .0000
3.0 .7524 ± .0010 .7610 ± .0010 .6971 ± .0021
8.0 .7528 ± .0010 .7629 ± .0010 .7473 ± .0009

for the rest of the study; this already improves the AUC significantly
compared to using the non-private hyperparameters2.

4.2 Bias-Variance Trade-off
With fixed noise multiplier (and other hyperparameters like the
training steps), the norm bound 𝐶 for each per-example gradient
allows a bias-variance trade-off in the gradient estimation for a
fixed 𝜀. Specifically, increasing 𝐶 reduces bias but increases the
variance in gradient estimation due to the addition of more noise.
A proper choice of 𝐶 improves the quality of trained model. For
example, Table 2 shows that in a low privacy regime (where the
noise multiplier is smaller), increasing 𝐶 leads to better model
performance because the added noise is already small. On the other
hand, a large 𝐶 can hurt performance in the high privacy regime
by requiring large amounts of noise. Adaptively choosing the norm
bound 𝐶 has been studied in the literature [34, 40].

4.3 Large Batch Training
Batch size is an important hyperparameter that affects different
aspects of DP training. Specifically, increasing the batch size leads
to a larger subsampling ratio, which implies larger noise multiplier
for the same 𝜀. On the other hand, increasing the batch size also
reduces the effective noise that is added to the average gradient
because the noised sum of gradients are divided by the batch size [1,
2Ideally, hyperparameter tuning should be performed with DP, e.g., using [19]. How-
ever, following most prior work on DP training, we ignore the DP cost for hyperpa-
rameter tuning.
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Figure 2: Relationship between batch size and noise std for
fixed (a) training epochs and (b) training steps. The dotted
line shows the batch size (1024) in the non-private baseline.

Table 3: AUC with large batch size and training epochs on
Criteo pCTR. The results can be compared with Table 2 (batch
size 1024, 8 epochs).

𝜀 batch size epochs 𝐶 AUC

0.5 16,384 64 30 0.7740 ± 0.0003
0.5 8,192 32 30 0.7689 ± 0.0003

3.0 16,384 64 30 0.7810 ± 0.0003
3.0 8,192 32 30 0.7782 ± 0.0003

8.0 16,384 64 30 0.7818 ± 0.0003
8.0 8,192 32 30 0.7799 ± 0.0004

Algorithm 1]. Moreover, when fixing the number of training epochs,
varying the batch size also changes the number of training steps,
which affects both the privacy accounting and model utility.

In Figure 2, we plot the relationship between the Gaussian noise
standard deviation (std) required to guarantee a certain 𝜀, when the
batch size changes. In Figure 2(a), we fix the total number of passes
(epochs) over the data; the noise std continues to decrease as the
batch size increases beyond 106. However, this is not very realistic,
because with fixed training epochs, increased batch sizes lead to de-
creased number of training steps. Modern neural networks trained
with stochastic optimizers usually require a minimum number of
steps to fit the data well. In Figure 2(b), we plot the relation under
the condition of fixed number of training steps. In this case, the
benefit of large batch sizes plateaus.

Since SGD optimization is itself stochastic, reducing the noise std
might not improve the model ad infinitum. However, larger batches
reduce noise, which allows the norm bound𝐶 to be increased while
keeping the total added noise and privacy level fixed. Increasing 𝐶
can yield performance gains. Specifically, Table 3 shows the model
performances on Criteo pCTR with increased batch sizes, training
epochs, and norm bound 𝐶 . Comparing with Table 2, large batch
sizes lead to significant performance boost. Note that for 𝜀 = 0.5, the
model cannot properly train (AUC = 0.5) for 𝐶 = 30, but reaches
AUC = 0.77 when the batch size increases 16×. We note that large
batches have previously been used to improve DP-SGD for vision
and language models [2, 8, 24].
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Figure 3: The impact on utility by tuning the norm bound 𝐶
and microbatch size 𝐵𝜇 individually, and jointly, for Criteo
pCTR. The search range for both 𝐶 and 𝐵𝜇 are {1, 8, 16, 32}.

4.4 Microbatching
Microbatching was originally used to mitigate the computation
and memory overhead of vanilla DP-SGD implementations [1]. It
works by partitioning each mini-batch of 𝐵 training examples into
“microbatches” of size 𝐵𝜇 , and performing ℓ2-norm rescaling on the
average gradient of each microbatch (as oppose to the per-example
gradient). With large 𝐵𝜇 , even a vanilla DP-SGD implementation
could be quite efficient because microbatch average gradients can be
computed with standard backpropagation API. However, because
group norm bounding changes the sensitivity of the mean gradient
query, the magnitude of Gaussian noises scale up by a factor of 𝐵𝜇
under the same privacy guarantee. As a result, large 𝐵𝜇 generally
leads to worse model utility.

In our case, with an efficient implementation (Section 5), we
do not need to use microbatching. However, we empirically found
that small 𝐵𝜇 could improve the model utility. One potential reason
is that this allows a different kind of bias-variance trade-off from
changing the norm bound𝐶 (Section 4.2). The increased noise leads
to higher variance in gradient estimation. On the other hand, av-
eraging the gradients within the microbatch before clipping could
potentially reduce the bias when there are cancellations. For exam-
ple, averaging 𝐵𝜇 i.i.d. Gaussian vectors reduces the expected norm
by a factor of 1/

√︁
𝐵𝜇 . The cancellation of gradient vectors is hard

to characterize theoretically, but as shown in Figure 3(a), increasing
𝐵𝜇 moderately indeed improve the utility for Criteo pCTR. Similar
to𝐶 , the maximum tolerable value before it starts hurting the utility
increases with 𝜀. On the other hand, 𝐶 and 𝐵𝜇 seem to be helping
with bias reduction in different ways, because increasing each of
them by the same scaling factor leads to different AUC, even though
the Gaussian noise scale (i.e., the variance) would be increased by
the same amount. As a result, we could combine the two factors to
further boost the utility, as verified in Figure 3(b).

4.5 Tighter Privacy Accounting
Privacy accounting estimates the privacy budget 𝜀 for a DP-SGD
trained model according to the specific hyperparameters such as
the noise std, the norm bound 𝐶 , the number of training steps, etc.
Rényi Differential Privacy (RDP) accounting has been the most
widely used approach in DP-SGD since the original paper [1]. With
RDP, 𝜀 can be computed using only the number of epochs, the batch
size, and the noise std.

In this paper, we explore latest advances in privacy accounting to
provide tighter estimates. Specifically, several recent works [30, 38]
studied numerical methods for estimating the privacy parameters
of a DP mechanism to an arbitrary accuracy using the notion of
privacy loss distributions (PLD). A crucial property is that the PLD
of a composition of multiple mechanisms is the convolution of their
individual PLDs. Thus, Koskela et al. [23] used the Fast Fourier
Transform (FFT) in order to speed up the computation of the PLD
of the composition; faster algorithms and more accurate algorithms
have been proposed in subsequent work [15, 18], and have been the
basis of multiple open-source implementations from both industry
and academia including [17, 31, 37]. In particular, in this paper, we
use the so-called “connect-the-dots” algorithm of Doroshenko et al.
[9] for privacy accounting.
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Figure 4: (a) Comparison between RDP and PLD accounting
and (b) comparison of computational efficiency. Measured
on Criteo pCTR with identical model architecture, hyperpa-
rameters one a single Nvidia® Tesla® P100 GPU.

Figure 4(a) compares RDP accounting to the improved PLD ac-
counting. Because the PLD estimation is tighter, a given 𝜀 requires
smaller noise than implied by RDP accounting. We observe consis-
tent improvements of model utility across all privacy regimes, with
a larger gap for smaller 𝜀’s.

5 COMPUTATION & MEMORY OVERHEAD

Table 4: Comparison of memory consumption via the maxi-
mum batch size that can be trained on Criteo pCTR with one
Nvidia® Tesla® P100 GPU.

Batch Size Number of steps per second
Baseline DP-SGD Ghost Clipping

32 62.73 ± .08 7.48 ± .08 28.57 ± .61
64 63.91 ± .71 out of mem. 28.05 ± .33
256 41.60 ± .70 out of mem. 27.52 ± .35
1024 14.17 ± .83 out of mem. 14.07 ± .09
4096 3.77 ± .16 out of mem. 3.88 ± .26
16384 3.10 ± .34 out of mem. 3.27 ± .28
65536 2.91 ± .13 out of mem. 2.62 ± .24
524288 0.96 ± .05 out of mem. 0.80 ± .06
1048576 out of mem. out of mem. out of mem.

Another obstacle to using DP-SGD in real-world deep learning
systems is the potential computation and memory overhead. A
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naive implementation of DP-SGD that explicitly computes each
per-example gradient can lead to several orders of magnitude more
memory consumption and computational cost. Therefore, efficient
implementations of DP-SGD have been studied from various an-
gles, includingmicro-batching [1], layer-specific algorithms [16, 25],
just-in-time compilation [39], and approximation via random pro-
jections [4].

Here we demonstrate that when implemented with care, DP-
SGD can be run with small computation and memory overheads
for ads prediction models. This is enabled by the following observa-
tions: (1) To bound sensitivity, we only need per-example gradient
norms, not per-example gradient vectors. (2) Once per-example gra-
dient norms are computed, the norm-bounded average gradients
can be computed using standard backpropagation with reweighted
loss. (3) Most ads prediction models only use embedding and linear
layers. As first noted by Goodfellow [16], the per-example gradi-
ent norms for fully connected layers can be efficiently estimated
with standard backpropagation sans materializing the per-exam-
ple gradient vectors. Since an embedding layer is equivalent to
a fully connected layer on one-hot encoded inputs, Goodfellow’s
observation can be used in DP-SGD.

Based on these observations, we implement a two-pass algorithm
that computes per-example gradient norms in the first pass and the
norm-bounded average gradient in the second pass. Since most of
the computation and memory overhead comes from materializing
per-example gradient vectors, our implementation is able to reduce
these significantly. This technique is usually called “ghost clipping”,
and is also effective in private training for computer vision [5] and
natural language processing [20, 26]. We implement this algorithm
in JAX [3], and compare to a baseline implementation using JAX
just-in-time (JIT) compilation, which is already faster than a vanilla
implementation as reported in Subramani et al. [39], as well as the
non-private baseline (called Baseline).

Figure 4(b) plots the number of examples per second using differ-
ent training algorithms and batch sizes. We observe that Fast-DP-
SGD scales similarly to the non-private baseline, and the computa-
tion overhead is negligible for intermediate to large batch sizes. On
the other hand, the JIT based implementation is not only slower
but also incapable of handling batch sizes larger than 64 because
its memory overhead grows linearly with the batch size. The maxi-
mum batch size that each algorithm can handle on a single GPU is
documented in Table 4. We can see that the batch size cap is the
same for Fast-DP-SGD and the non-private baseline, demonstrating
that the memory overhead is negligible.

The experiments above were done on a single GPU. The batch
size can be easily scaled beyond the maximum value in Table 4
by using multi-device data parallelism, and gradient accumulation
across multiple backpropagation steps.

6 COMPARISON TO LABEL DP
Label differential privacy (LabelDP) [6] is a notion where the fea-
tures are public and only the labels need privacy protection. It has
been recently studied in deep learning [13, 29], and more specif-
ically in ad modeling [14]. In this section, we compare DP-SGD
with LabelDP algorithms under the same privacy budget 𝜀. (Note
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Figure 5: Comparing LabelDP (Randomized Response) with
DP-SGD on Criteo under the same privacy budget 𝜀.

that this is not an apples-to-apples comparison since unlike DP-
SGD, LabelDP protects only the labels; furthermore, since we use
randomized response as our LabelDP algorithm, we have 𝛿 = 0.)

From Figure 5, we observe that LabelDP generally provides
higher utility in low privacy (large 𝜀) regimes, while DP-SGD out-
performs it in high privacy (small 𝜀) regimes. The behavior in high
privacy regimes is counter-intuitive because DP-SGD has stronger
privacy guarantees yet provides better utility.

7 CONCLUSIONS
In this work we showed that it is possible to privately train ad
models using DP-SGD, while neither significantly sacrificing utility
nor incurring computational cost. An interesting research direction
is to develop new private training algorithms for “hybrid DP”—an
interpolation between vanilla DP and Label DP in which some but
not all of the features are public. Another line of work would be
to study if the low-rank nature / sparsity of the gradients can be
exploited to reduce the noise needed for private training.
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A TRAINING DETAILS
The Criteo pCTR dataset [7] contains around 40 million examples.
The raw dataset comes with a labeled training set and an unlabeled
test set. We split the raw training set chronologically into a 80/10/10
partition of train/validation/test sets. The reported metrics are on
this labeled test split. Each example consists of 13 integer features,
26 categorical features, and one binary label. We preprocess each
integer feature with a log transformation.

The neural network consists of six layers. In the first layer, each
categorical feature is mapped into a dense feature vector via an
embedding layer. The embedding dimension is decided via a heuris-
tic rule as int[2𝑉 0.25], where 𝑉 is the number of unique tokens in
each categorical feature. The dense features are then concatenated
with the log-transformed integer features to form the first layer rep-
resentation. This representation are fed into four fully connected
layers, each with an output dimension of 598 and a ReLU activa-
tion function. Finally, a fully connected layer is used to compute
the scalar prediction (the logit). There are around 78M trainable
parameters in this neural network model.

The network is trained with binary cross entropy loss. Unless
otherwise specified, we train the network for five epochs, and we
scale the base learning rate with a cosine decay [27]. In the non-
private baseline, we use the Yogi optimizer [41] with a base learning
rate of 0.01, and a batch size of 1024.

Directly reusing the same hyperparameters for private train-
ing leads to suboptimal results. We discuss how to achieve better
privacy-utility trade-off by adjusting different hyperparameters in
Section 4. Even though the analysis shows that optimal hyperpa-
rameters could be different for different range of privacy budget 𝜀’s,
for simplicity, we use a fixed value for most of hyperparameters in
the final results of Criteo pCTR in Table 1: SGD optimizer with base
learning rate 0.01, momentum 0.9, batch size 65,536, and training for
150 epochs.We only tune the norm bound𝐶 ∈ {1.0, 10.0, 50.0, 100.0}
and microbatch size 𝐵𝜇 ∈ {1, 4, 8} for each 𝜀 separately.

The model and training setup for the pCVR and pConvs are
similar, except that the pConvs come with integer labels, thus are
trained and evaluated with a Poisson log loss (PLL). Specifically, let
𝑓𝜃 (𝑥) be the scalar prediction from the final layer of the neural net-
work, interpreting exp(𝑓𝜃 (𝑥)) as predicting the mean of a Poisson
distribution, then the log-likelihood of the integer label 𝑦 is

𝑦𝑓𝜃 (𝑥) − exp(𝑓𝜃 (𝑥)) − log(𝑦!) .
The maximum (log-)likelihood training objective is thus equivalent
to minimizing the following PLL function:

ℓ (𝑓𝜃 , (𝑥,𝑦)) = exp(𝑓𝜃 (𝑥)) − 𝑦𝑓𝜃 (𝑥) . (1)

Note the log(𝑦!) term is dropped since it is independent of the
trainable parameters 𝜃 . Therefore this is an unnormalized PLL.
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