
AdaEnsemble: Learning Adaptively Sparse Structured Ensemble
Network for Click-Through Rate Prediction

Yachen Yan

yachen.yan@creditkarma.com

Credit Karma

San Francisco, California, USA

Liubo Li

liubo.li@creditkarma.com

Credit Karma

San Francisco, California, USA

ABSTRACT
Learning feature interactions is crucial to success for large-scale

CTR prediction in recommender systems and Ads ranking. Re-

searchers and practitioners extensively proposed various neural

network architectures for searching and modeling feature interac-

tions. However, we observe that different datasets favor different

neural network architectures and feature interaction types, suggest-

ing that different feature interaction learning methods may have

their own unique advantages. Inspired by this observation, we pro-

pose AdaEnsemble: a Sparsely-Gated Mixture-of-Experts (Sparse-

MoE) architecture that can leverage the strengths of heterogeneous

feature interaction experts and adaptively learns the routing to a

sparse combination of experts for each example, allowing us to

build a dynamic hierarchy of the feature interactions of different

types and orders. To further improve the prediction accuracy and

inference efficiency, we incorporate the dynamic early exitingmech-

anism for feature interaction depth selection. The AdaEnsemble can

adaptively choose the feature interaction depth and find the corre-

sponding SparseMoE stacking layer to exit and compute prediction

from. Therefore, our proposed architecture inherits the advantages

of the exponential combinations of sparsely gated experts within

SparseMoE layers and further dynamically selects the optimal fea-

ture interaction depth without executing deeper layers. We im-

plement the proposed AdaEnsemble and evaluate its performance

on real-world datasets. Extensive experiment results demonstrate

the efficiency and effectiveness of AdaEnsemble over state-of-the-

art models. We open-source the TensorFlow implementation of

AdaEnsemble: https://github.com/yanyachen/AdaEnsemble.

CCS CONCEPTS
• Computing methodologies; •Machine learning; •Machine
learning approaches; • Neural networks;

KEYWORDS
CTR prediction, Recommendation System, Feature Interaction, Mix-

ture of Experts, Dynamic Inference, Early Exiting, AutoML, Deep

Neural Network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’23, August 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Yachen Yan and Liubo Li. 2023. AdaEnsemble: Learning Adaptively Sparse

Structured Ensemble Network for Click-Through Rate Prediction. In Pro-
ceedings of ACM Conference (Conference’23). ACM, New York, NY, USA,

6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Click-through rate (CTR) prediction model [15] is an essential com-

ponent for the large-scale search ranking, online advertising and

recommendation system [1, 5, 11, 22].

Many deep learning-based models have been proposed for CTR

prediction problems in the industry. They have become dominant

in learning the useful feature interactions of the mixed-type input

in an end-to-end fashion[22]. While every existing method focuses

on automatically modeling different types of feature interactions,

there have been very few attempts to model different types of inter-

actions jointly and dynamically, such that one model architecture

can be directly applied to different types of datasets. We believe that

the ensemble of various interaction modules to generate heteroge-

neous feature interactions can complement the non-overlapping

knowledge learned through each interaction learning approach.

With the aim of accomplishing the stated objective, we propose

AdaEnsemble: a Sparsely-Gated Mixture-of-Experts (SparseMoE)

hierarchical architecture to ensemble different interaction learning

modules and dynamically select optimal feature interaction depth.

AdaEnsemble encompasses SparseMoE layers and the Depth Se-

lecting Controller. Within each SparseMoE layer of AdaEnsemble,

there is a collection of interaction learning experts, and a trainable

gating network determines a sparse combination of these experts

to use for each example. Within the Depth Selecting Controller, a

trainable gating network will choose the feature interaction depth

for each example and recursively propagate feature interaction rep-

resentations through SparseMoE layers to the corresponding depth

for computing the prediction. Through these conditional compu-

tation mechanisms, we enlarged the model capacity exponentially

maintaining computational efficiency.

The main contributions of this paper can be summarized as

follows:

• We designed a novel model architecture called AdaEnsemble to

ensemble various types of feature interaction learning modules

by Sparsely-Gated Mixture-of-Experts (SparseMoE). Through

utilizing MoE layers recursively with residual connections and

normalization, AdaEnsemble can model different types of inter-

actions jointly and dynamically.

• We designed an efficient and effective Depth Selecting Con-

troller to adaptively choose the optimal feature interaction depth.

Through utilizing this controller, AdaEnsemble can dynamically

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’23, August 2023, Long Beach, CA, USA Yachen and Liubo

Embedding Layer

Categorical
Feature

Bucktized
 Numeric Feature

1st Sparse MoE Layer

2nd Sparse MoE Layer

l-th Sparse MoE Layer

Input Feature Map

Add & Normalize

Add & Normalize

Add & Normalize

Depth Selecting
Network

1st
Estimator

2nd
Estimator

l-th
Estimator

Figure 1: The Architecture of AdaEnsemble
In this example, the depth selecting network selects the 2nd layer to exit

and compute the final prediction, therefore the deeper layers was not

activated and plotted translucent in the figure.

determine the layer for early exiting to improve prediction accu-

racy and inference efficiency.

• We applied a bi-level optimization algorithm for iteratively train-

ing the modeling network and gating network.

2 PROPOSED MODEL: ADAENSEMBLE
2.1 Feature Interaction Experts
We considered several types of feature interaction experts in our

model: Dense Layer, Convolution Layer, Multi-Head Self-Attention

Layer, Polynomial Interaction Layer, and Cross Layer. Essentially,

any feature interaction learning layer can be included in our frame-

work, and the residual connection and normalization will be applied

to their ensembles. Now we introduce these feature interaction ex-

perts included in our framework. Note that our proposed framework

is general and can use arbitrary feature interaction modules. The

potential feature interaction experts can be used are not limited to

the aforementioned.

2.2 Sparse Mixture-of-Experts Layer
The Sparse Mixture-of-Experts layer ensembles aforementioned

heterogeneous feature interaction experts and consists of several

other essential parts to make the overall model can be stably trained.

2.2.1 Noisy Gating Network. The gating network essentially com-

putes the gating value for selecting experts for each input embed-

ding and weighting the output embedding of each expert.

Sparse MoE Layer

Expert 1 Expert 2 Expert 3 Expert n-1 Expert n

Input
Embedding

Output
Embedding

Gating
Network

Sparse
Dispatcher

non-zero index

non-zero value

....

Figure 2: The architecture of SparseMixture-of-Experts Layer

Input
Embedding

Feed-Forward Network

e1 e2 e3 e4

Expert
Embedding

Cosine
Similarity

Learnable Temperature
Re-Scaling

Top-K

L2 Normalization

L2 Normalization

Routing Score

Softmax

Noise Injection

Figure 3: The Noisy Gating Network within Sparse Mixture-
of-Experts Layer

For the input embedding of gating network 𝑋0, it firstly pro-

cessed by the gating network: a two-layer feed-forward network,

i.e. a dimension reduction layer with reduction ratio 𝑟 [6], a non-

linear activation function and then a dense layer projecting to

hidden state ℎ ∈ 𝑅𝑑 . Additionally, we applied multiplicative jitter

noise for introducing exploration and promoting load balancing

between different experts.

ℎ = FFN(𝑋0 ◦ RandomUniform(1.0 − eps, 1.0 + eps)) (1)

ADS Track Paper Conference’23, August 2023, Long Beach, CA, USA

After projecting the input embedding to hidden state ℎ ∈ 𝑅𝑑 ,

we apply the 𝐿2 normalization to both hidden state ℎ ∈ 𝑅𝑑 and

learnable expert embeddings 𝑣 𝑗 ∈ 𝑅𝑑 , where 𝑗 is the index of

expert. Then, we compute the cosine similarity between the hidden

state and expert embedding as the initial routing score. Here we

encourage the uniformity of representations to avoid dominated

experts issue.

𝑠 𝑗 =
ℎ · 𝑣 𝑗
∥ℎ∥∥𝑣 𝑗 ∥

(2)

Finally, we use a learnable temperature scalar 𝜏 to re-scale the

routing scores to the range [−1, +1].

𝑔 𝑗 = 𝑠 𝑗/𝜏 (3)

For the computed routing score 𝑔, we only keep the top k values

and set the rest to −∞, resulting in the corresponding softmax

gating values equal 0. The 𝑗-th element of the output vector of the

gating network is

𝐸𝑥𝑝𝑒𝑟𝑡𝐺 (𝑋0) 𝑗 =
exp

(
TopK(𝑔, 𝑘) 𝑗

)
∑𝑁

𝑗=1 exp

(
TopK(𝑔, 𝑘) 𝑗

) , (4)

where

TopK(𝑔, 𝑘) 𝑗 =
{
𝑔 𝑗 if 𝑔 𝑗 is in the top 𝑘 elements of 𝑔

−∞ otherwise.

(5)

These gating values will be used by the sparse dispatcher for

routing examples to different experts. This is the essential step for

achieving sparsity of our Sparse Mixture-of-Experts layer. Note

that the 𝐸𝑥𝑝𝑒𝑟𝑡𝐺 (𝑋0) is differentiable regardless the value of 𝑘[3].

2.2.2 Annealing Top-K Gating. We also introduce annealing mech-

anism to the Top-K operation. We starts with 𝑘 value equal to the

number of experts, which means that we starts as a fully dense gate

that routes examples to all experts. Then we gradually decrease

the 𝑘 and route examples to fewer experts, to adaptively make

the structure sparser and continuously improving the computation

efficiency.

By annealing of the 𝑘 value, we start to train our architecture

with a dense structure which allows us to thoroughly learn all ex-

perts and adjust the gating network in the correct direction at the

beginning. Therefore, we can control the sparsity of our architec-

ture while training to not only accelerate the convergence of the

gating network but also benefit the experts’ specialty for learning

particular types of feature interactions.

2.2.3 Sparse Dispatcher. The sparse dispatcher [3, 17, 24] takes the
examples gating values and experts as input. It firstly dispatches

the examples to the experts corresponding to the non-zero gating

values, and lets experts generate the output embeddings. The output

𝑦 of the Sparse Mixture-of-Experts layer is the linearly weighted

combination of expert output embeddings by the non-zero gating

values.

𝑦 =
∑︁
𝑗∈𝜙

𝐸𝑥𝑝𝑒𝑟𝑡𝐺 𝑗 (𝑋0)𝐸 𝑗 (𝑋0, 𝑋𝑙)
(6)

Where𝜙 denotes the selected non-zero indices.We save computa-

tion based on the sparsity of𝐸𝑥𝑝𝑒𝑟𝑡𝐺 (𝑋0).Wherever𝐸𝑥𝑝𝑒𝑟𝑡𝐺 (𝑋0) 𝑗 =
0, we don’t pass the expert to the corresponding expert and do not

need to compute expert output embedding 𝐸 𝑗 (𝑋0, 𝑋𝑙).

2.2.4 Load Distribution Regularization. As stated in the previous

research [2, 3, 17, 24], the gating network tends to select only a

few experts if no regularization is applied, especially when certain

experts are easier to train than other experts. This phenomenon

is self-reinforcing, since the selected experts are trained more and

will be selected more frequently by the gating network. Therefore,

the load balancing loss is applied to enforce the uniform expert

routing.

𝐿
balance

= _ · 𝑁 ·
𝑁∑︁
𝑗=1

𝑓𝑗 · 𝑃 𝑗 (7)

where 𝐵 is the batch size, 𝑁 is the number of experts, 𝑓𝑗 is the

fraction of examples dispatched to expert j, 𝑃 𝑗 is the average of the

router probability allocated for expert j, and _ is the coefficient for

the regularization term.

𝑓𝑗 =
1

𝐵

∑︁
𝑥∈B

1{argmax 𝑝 (𝑥) = 𝑗}
(8)

𝑃 𝑗 =
1

𝐵

∑︁
𝑥∈B

𝑝 𝑗 (𝑥) (9)

While the default load balancing loss is applicable and effective

when experts are of the same type, AdaEnsemble is using hetero-

geneous feature interaction experts, and the optimal load for each

expert is not uniform. Therefore, we apply the below load distribu-

tion regularization to encourage the expected load distribution of

heterogeneous experts.

𝐿
distribution

= _ ·
𝑁∑︁
𝑗=1

𝑓𝑗 · 𝑃 𝑗
𝑤 𝑗

(10)

where hyper-parameter𝑤 𝑗 is the expected load fraction of exam-

ples dispatched to expert j, and naturally

∑𝑁
𝑗=1𝑤 𝑗 = 1. In practice,

the _ should be sufficiently large to prevent expert selection self-

reinforcing phenomenon at the initial training stage while not

overwhelming the primary LogLoss objective.

2.3 Depth Selecting Controller
2.3.1 Depth Selecting Network. The Depth Selecting Network is

essentially the same configuration as the aforementioned Noisy

Gating Network for SparseMoE layer. We denote it by 𝐷𝑒𝑝𝑡ℎ𝐺 (𝑋0).
The outputs of 𝐷𝑒𝑝𝑡ℎ𝐺 (𝑋0) are [𝑔𝑑𝑒𝑝𝑡ℎ

1
, 𝑔

𝑑𝑒𝑝𝑡ℎ

2
, · · · , 𝑔𝑑𝑒𝑝𝑡ℎ

𝐿
], indi-

cating each example’s optimal forward propagation depth. The 𝑙-th

unit denotes the probability of selecting the 𝑙-th MoE layer to exit.

The optimal depth is automatically selected as the one correspond-

ing to the largest probability. In contrast to the expert selection,

when choosing the optimal depth of each example for the dynamic

inference, we only keep the top-1 depth index from the output

units of the Depth Selecting Network. Note that we can also ap-

ply the load distribution regularization to encourage the examples’

propagation depth distribution.

Conference’23, August 2023, Long Beach, CA, USA Yachen and Liubo

2.3.2 Dynamic PropagationMechanism. With the depth gates𝑔
𝑑𝑒𝑝𝑡ℎ

𝑙
∈

[0, 1] computed by Depth Selecting Network, we obtain the opti-

mal depth for each example. If 𝑔
𝑑𝑒𝑝𝑡ℎ

𝑙
= 0, we recursively forward

propagate examples through MoE layers and compute deeper repre-

sentation until 𝑔
𝑑𝑒𝑝𝑡ℎ

𝑙
= 1 or reaching the final layer. If 𝑔

𝑑𝑒𝑝𝑡ℎ

𝑙
= 1,

the forward propagation will be stopped and the corresponding

𝑙-th estimator will compute the prediction. To efficiently process a

batch of examples with different optimal propagation depths, we

utilize algorithm 1 for dynamic forward propagation.

Algorithm 1 Dynamic Propagation

1: DepthGates← DepthSelectingNetwork(X0))
2: 𝑦 ← DynamicPropagation(X0, DepthGates, depth=0)
3: return 𝑦

4:

5: function DynamicPropagation(Inputs, Gates, Depth)
6: Outputs = MoEDepth(Inputs)
7: Depth += 1

8: if Depth == Number of Layer then
9: 𝑦 = EstimatorDepth(Outputs)
10: else
11: g = Gates[:, Depth]
12: Outputskeep, Outputsexit = Dispatch(Outputs, g)
13: Gateskeep, _ = Dispatch(Gates, g)
14:

15: 𝑦
keep

= DynamicPropagation(Outputskeep, Gateskeep, Depth)
16: 𝑦exit = EstimatorDepth(Outputsexit)
17: 𝑦 = Combine(𝑦

keep
, 𝑦exit)

18: end if
19: return 𝑦

20: end function

2.4 Training
2.4.1 Training Objective. The loss functionwe use a linearlyweighted
combination of the Log Loss and the auxiliary load distribution

regularization,

𝐿𝑜𝑠𝑠 = 𝐿LogLoss + _1𝐿
expert

distribution
+ _2𝐿depth

distribution
(11)

where _1 and _2 are the coefficients for weighting the load distri-

bution regularization of experts and depth.

2.4.2 Bi-Level Optimization. The optimization task for training the

AdaEnsemble is to jointly optimize the parameters𝑊 , which stands

for the expert layers and estimator layers, and 𝛼 , which represents

the expert gating network and depth selecting network. Inspired

by the DARTS [9], we apply bi-level optimization algorithm for

training our model, where 𝛼 is the upper-level parameters and𝑊

is the lower-level parameters. We apply algorithm 2 to optimize𝑊

and 𝛼 alternatively and iteratively.

2.5 Discussion on AdaEnsemble
The combination of sparse experts routing within each SparseMoE

layer and the early exiting by depth selecting controller brings two

merits to the proposed model. On one hand, the stacked SparseMoE

layers allow the proposed model to leverage the exponential combi-

nations of sparsely gated experts, which brings in more predicting

Algorithm 2 Bi-Level Optimization for AdaEnsemble

Input: training examples with corresponding labels, step size 𝑡

Output: well-learned parametersW∗ and 𝛼∗

1: while not converged do
2: Sample a mini-batch of validation data

3: Updating 𝛼 by descending ∇𝛼 L𝑣𝑎𝑙

(
W − b∇WL𝑡𝑟𝑎𝑖𝑛 (W, 𝛼), 𝛼

)
4: (b = 0 for first-order approximation)

5: for 𝑖 ← 1, 𝑡 do
6: Sample a mini-batch of training data

7: UpdateW by descending ∇WL𝑡𝑟𝑎𝑖𝑛 (W, 𝛼)
8: end for
9: end while

power. On the other hand, both the experts routing mechanism and

the depth selecting mechanism enables the proposed model to learn

the instance-ware expert combination and instance-ware model

depth. These two conditional computation mechanisms improve

the efficiency during model serving. In the next section, we will

illustrate the effectiveness of the proposed model through some

experimental studies.

3 EXPERIMENTS
In this section, we focus on evaluating the effectiveness of our

proposed models and seeking answers to the following research

questions::

• Q1: How does our proposed AdaEnsemble perform compared to

each baseline in the CTR prediction problem?

• Q2: How does the SparseMoE layer perform compared to Dense-

MoE, which utilizes all feature interaction experts? Does the

cascade of SparseMoE layers effectively capture different types

of feature interactions?

• Q3: How does the depth selecting controller perform compared

to a full-depth network? Does the early exiting mechanism

achieve both effectiveness and efficiency?

3.1 Experiment Setup
3.1.1 Datasets. We evaluate our proposed model on three public

real-world datasets widely used for research.

1. Criteo.1 Criteo dataset is from Kaggle competition in 2014.

Criteo AI Lab officially released this dataset after, for academic use.

2. Avazu.2 Avazu dataset is from Kaggle competition in 2015.

Avazu provided 10 days of click-through data.

3. iPinYou.3 iPinYou dataset is from iPinYou Global RTB(Real-

Time Bidding) Bidding Algorithm Competition in 2013. We follow

the data processing steps of [23].

3.1.2 Competing Models. We compare AdaEnsemble with follow-

ing models: LR (Logistic Regression) [10, 11], FM (Factorization Ma-

chine) [14], DNN (Multilayer Perceptron), Wide & Deep [1], Deep-

Crossing [16], DCN (Deep & Cross Network) [19], PNN (with both

inner product layer and outer product layer) [12, 13], DeepFM [4],

xDeepFM [8], AutoInt [18], FiBiNET [7], xDeepInt[21] and DCN

V2 [20]. Some of the models are state-of-the-art models for CTR

prediction problem and are widely used in the industry.

1
https://www.kaggle.com/c/criteo-display-ad-challenge

2
https://www.kaggle.com/c/avazu-ctr-prediction

3
http://contest.ipinyou.com/

ADS Track Paper Conference’23, August 2023, Long Beach, CA, USA

3.2 Model Performance Comparison (Q1)

Table 1: Performance Comparison of Different Algorithms
on Criteo, Avazu and iPinYou Dataset.

Criteo Avazu iPinYou

Model AUC LogLoss AUC LogLoss AUC LogLoss

LR 0.7924 0.4577 0.7533 0.3952 0.7692 0.005605

FM 0.8030 0.4487 0.7652 0.3889 0.7737 0.005576

DNN 0.8051 0.4461 0.7627 0.3895 0.7732 0.005749

Wide&Deep 0.8062 0.4451 0.7637 0.3889 0.7763 0.005589

DeepFM 0.8069 0.4445 0.7665 0.3879 0.7749 0.005609

DeepCrossing 0.8068 0.4456 0.7628 0.3891 0.7706 0.005657

DCN 0.8056 0.4457 0.7661 0.3880 0.7758 0.005682

PNN 0.8083 0.4433 0.7663 0.3882 0.7783 0.005584

xDeepFM 0.8077 0.4439 0.7668 0.3878 0.7772 0.005664

AutoInt 0.8053 0.4462 0.7650 0.3883 0.7732 0.005758

FiBiNET 0.8082 0.4439 0.7652 0.3886 0.7756 0.005679

xDeepInt 0.8111 0.4408 0.7672 0.3876 0.7790 0.005567

DCN V2 0.8086 0.4433 0.7662 0.3882 0.7765 0.005593

AdaEnsemble 0.8132 0.4394 0.7687 0.3865 0.7807 0.005550

The overall performance of different model architectures is listed

in Table 1. We have the following observations in terms of model

effectiveness:

• Models with more than two feature interaction modules gen-

erally perform better than models with only a single feature

interaction module, indicating the importance of jointly learned

feature interaction representation.

• The optimal feature interaction depth varies by feature inter-

action module type and when combined with different module

types, indicating the necessity for dynamically combining differ-

ent feature interactions on different interaction depths.

• AdaEnsemble achieves the best prediction performance among

all models. Our model’s superior performance could be attrib-

uted to the fact that AdaEnsemble jointly model various types

of feature interactions by adaptively selecting the feature inter-

action experts combination and determining the optimal feature

interaction depth by the controller.

3.3 Feature Interaction Expert Selection
Analysis (Q2)

We compare the model performance and FLOPs between the Dense-

MoE and SparseMoE layers in AdaEnsemble architecture. We also

include the performance of different multi-layer single expert mod-

els and their ensemble. All the performance of above methods are

listed in Table 2. We also draw the alluvial diagram Figure 4 to illus-

trate the dependency of each SparseMoE layer’s expert selection.

The color of the flow is clustered by the frequency of the expert com-

bination. Based on the above observations, we developed following

understandings:

• Utilizing different feature interaction experts result in better per-

formance than single expert models in general. SparseMoE layer

achieves a better tradeoff between accuracy and computation

efficiency.

• Only utilizing one expert per SparseMoE layer generally hurts

the model performance as the model cannot ensemble different

types of feature interactions.

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

Layer1 Layer2 Layer3 Layer4

Figure 4: The Alluvial diagram for illustrating the depen-
dency of each SparseMoE layer’s expert selection
Each vertical axis represents a SparseMoE layer and the proportion of an

expert being used. The horizontal flows indicate the dependency and

relation of different SparseMoE layer’s expert selection. The proportion of

the expert combination was represented by the width of the flows and

further clustered to different colors.

• When utilizing more than one expert per SparseMoE layer, even

though only a subset of feature interaction experts are selected,

SparseMoE can still effectively capture the most significant fea-

ture interactions of different depths and maintain similar per-

formance as the DenseMoE layer and superior performance to

ensemble, while including more experts can also result in more

computational cost.

• Figure 4 shows that the SparseMoE layers dynamically utilize a

different combination of experts across different layers to capture

the complex feature interactions effectively. That also explains

why fusing different feature interactions is crucial for prediction

accuracy.

Table 2: Performance Comparison of SparseMoE and Dense-
MoE on Criteo Dataset.

AUC LogLoss FLOPs

SparseMoE(k=1) 0.8096 0.4423 2.26M

SparseMoE(k=2) 0.8121 0.4400 4.14M

SparseMoE(k=3) 0.8132 0.4394 6.02M

SparseMoE(k=4) 0.8133 0.4393 7.09M

DenseMoE 0.8133 0.4392 9.78M

Ensemble 0.8120 0.4401 12.15M

Dense Expert Only 0.8050 0.4463 3.71M

Cross Expert Only 0.8086 0.4433 3.36M

Polynomial Expert Only 0.8111 0.4408 3.32M

CNN Expert Only 0.8022 0.4501 1.11M

MHSA Expert Only 0.8051 0.4465 2.17M

Conference’23, August 2023, Long Beach, CA, USA Yachen and Liubo

3.4 Depth Selection Analysis (Q3)
We compare the model performance between the AdaEnsemble

with and without depth selecting controller to investigate whether

the model achieves the harmony between prediction accuracy and

inference efficiency with respect to depth selection. The perfor-

mance of the different types of MoE layers and ensemble result is

listed in Table 3.

With the incorporation of the depth selecting controller, we can

observe that our model can significantly improve training complex-

ity and inference efficiency (measured in FLOPs) while achieving

slightly better performance than the full-depth model. We think

the full-depth model is easier to overfit compared to AdaEnsem-

ble, thus resulting in slightly worse accuracy performance. The

AdaEnsemble with depth selecting controller adaptively selects

feature interaction depth per example basis, thus achieving better

trade-offs between prediction accuracy and inference efficiency.

The distribution of per example forward propagation depth is listed

in Table 4.

Table 3: Performance Comparison of AdaEnsemble with and
without controller on Criteo Dataset.

AUC LogLoss FLOPs

w/ controller 0.8132 0.4394 6.02M

w/o controller 0.8128 0.4396 8.58M

Table 4: AdaEnsemble Propagation Depth on Criteo Dataset.

Layer 1 Layer 2 Layer 3 Layer 4

Fraction 6.53% 19.36% 66.43% 7.68%

4 CONCLUSION
In this paper, we present a novel model architecture to click-through

rate (CTR) modeling by introducing the Sparse-Gated Mixture-of-

Experts (SparseMoE) hierarchical architecture for ensemble learn-

ing of heterogeneous feature interactions experts. ADepth Selecting

Controller component was integrated into the model to dynami-

cally select the optimal feature interaction depth for each instance.

The utilization of these two conditional computation mechanisms

results in a model architecture that can select a subset of feature

interactions experts and the optimal interaction depth for each in-

stance simultaneously, leading to an exponential increase in model

capacity without incurring a corresponding increase in inference

cost. Our extensive experiment demonstrate the superiority of our

approach in terms of effectiveness and efficiency.

Future work will be dedicated to exploring the potential for

extending our method to the modeling of user behavior sequences.

By learning a sparse ensemble of models, we anticipate that our

approach can dynamically select the optimal expert for different

behaviors in the context of user behavior sequence data.

REFERENCES
[1] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[2] Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Sak-

sham Singhal, Payal Bajaj, Xia Song, and Furu Wei. 2022. On the Representation

Collapse of Sparse Mixture of Experts. arXiv preprint arXiv:2204.09179 (2022).
[3] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers:

Scaling to trillion parameter models with simple and efficient sparsity.

[4] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[5] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine

Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting

clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1–9.

[6] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[7] Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: Combining

Feature Importance and Bilinear feature Interaction for Click-Through Rate

Prediction. arXiv preprint arXiv:1905.09433 (2019).
[8] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and

Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-

teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 1754–

1763.

[9] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055 (2018).
[10] H Brendan McMahan. 2011. Follow-the-regularized-leader and mirror descent:

Equivalence theorems and l1 regularization. (2011).

[11] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.

Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,

1222–1230.

[12] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.

2016. Product-based neural networks for user response prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, 1149–1154.

[13] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng

Guo, Yong Yu, and Xiuqiang He. 2018. Product-Based Neural Networks for User

Response Prediction over Multi-Field Categorical Data. ACM Transactions on
Information Systems (TOIS) 37, 1 (2018), 5.

[14] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[15] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. ACM, 521–530.

[16] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.

Deep crossing: Web-scale modeling without manually crafted combinatorial

features. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 255–262.

[17] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
[18] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2018. AutoInt: Automatic Feature Interaction Learning via Self-

Attentive Neural Networks. arXiv preprint arXiv:1810.11921 (2018).
[19] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network

for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[20] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,

and Ed Chi. 2021. DCN V2: Improved deep & cross network and practical lessons

for web-scale learning to rank systems. In Proceedings of the Web Conference 2021.
1785–1797.

[21] Yachen Yan and Liubo Li. 2020. xDeepInt: a hybrid architecture for modeling the

vector-wise and bit-wise feature interactions. (2020).

[22] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-

ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 5.

[23] Weinan Zhang, Shuai Yuan, JunWang, and Xuehua Shen. 2014. Real-time bidding

benchmarking with ipinyou dataset. arXiv preprint arXiv:1407.7073 (2014).
[24] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean,

Noam Shazeer, andWilliam Fedus. 2022. Designing effective sparse expert models.

arXiv preprint arXiv:2202.08906 (2022).

	Abstract
	1 Introduction
	2 Proposed Model: AdaEnsemble
	2.1 Feature Interaction Experts
	2.2 Sparse Mixture-of-Experts Layer
	2.3 Depth Selecting Controller
	2.4 Training
	2.5 Discussion on AdaEnsemble

	3 Experiments
	3.1 Experiment Setup
	3.2 Model Performance Comparison (Q1)
	3.3 Feature Interaction Expert Selection Analysis (Q2)
	3.4 Depth Selection Analysis (Q3)

	4 Conclusion
	References

