# Cost-Control in Display Advertising -Theory vs Practice

Anoop R Katti, Rui C. Goncalves, Rinchin lakovlev Zalando SE, Berlin, Germany

## Background

Marketing campaigns with budget and cost constraints (here, cpv): formulated as an optimization problem

Maximise {advertiser-utility} such that spend <= B and cpv <= C<sub>view</sub>

Optimal bidding (at every request)

$$bid = (value_{pred} + C_{view} * \mu_t) / (1 + \lambda_t + \mu_t)$$

Online update (after every n requests)

$$\lambda_{t+1} = max(\lambda_t + \varepsilon_{spend} * (spend_t^{actual} - spend_t^{target}), 0)$$
  
$$\mu_{t+1} = max(\mu_t + \varepsilon_{cost} * x_i * (cpv_t^{actual} - C_{view}), 0)$$

Yuan Gao, Kaiyu Yang, Yuanlong Chen, Min Liu, and Noureddine El Karoui. AdKDD 2022. Bidding agent design in the linkedin ad marketplace.

### Problem

The optimal bidding formula assumes optimal values for  $\mu$  and  $\lambda$ .

- In offline optimization, this is possible
- In online optimization, they converge over time

For cost-constrained campaigns,

 $\lambda^{OPT}=0, \mu^{OPT}=\infty, bid^{OPT}=C_{view}$ 

With optimal bidding formula, it can be shown:

$$bid_{avg} \ge C_{view}$$

Ineffective cost-control !





### **Proposed Solution**

What if we introduced  $C_{view} = \beta * C_{view}, 0 \le \beta < 1$ 

*bid* 
$$\geq C'_{view}$$
, i.e. bid may drop below  $C_{view}$ , if it is necessary

#### After cpv decreases to $C_{view}$ , $\mu \to \infty$ and the bid keeps dropping towards $C_{view}$

### **Proposed Solution**

We propose taking the best of both worlds:

- Modify the bidding formula as if there is a discounted  $C'_{view}$
- Don't modify the online update formula, i.e. compute it against C<sub>view</sub> as before

 $C_{view} = 1, E[value] = 5 * C_{view}$ 



New Bidding formula:

bid = (value<sub>pred</sub> + 
$$\beta$$
 \*  $C_{view}$  \*  $\mu_t$ ) / (1 +  $\lambda_t$  +  $\mu_t$ )

### Simulation on Synthetic Data

Cost is the active constraint (i.e. the budget is sufficiently high)



### Large-scale Evaluation on Real-world Data

Tested on O(10<sup>3</sup>) campaigns

|                                  | #campaigns with cost<br>violations | Uplift in advertiser utility<br>over Max-cap |
|----------------------------------|------------------------------------|----------------------------------------------|
| Max-cap                          | 0%                                 | _                                            |
| Cost-control-theoretical         | 8.15%                              | +22.09%                                      |
| Cost-control-practical, beta=0.8 | 4.12%                              | +22.60%                                      |
| Cost-control-practical, beta=0.5 | 5.13%                              | +25.84%                                      |
| Cost-control-practical, beta=0.2 | 5.21%                              | +17.49%                                      |
| Cost-control-practical, beta=0.0 | 5.46%                              | +11.68%                                      |

# **Concluding Remarks**

Summary

- New bidding formula that reduces cost violations by 50% (without hurting utility)

How to select  $\beta$ 

- Depends on how close the prices are to the bids => property of the market itself
- High market competition => prices closely follow winning bids => lower beta (say, 0.5 0.8)
- Low market competition => prices are much lower than the winning bids => beta close to 1 (say, 0.9 0.95)

Future work

- Explore other ways to achieve cost-control and compare
- Attempt a theoretical justification