
A Bag of Tricks for Scaling 
CPU-based Deep FFMs to 
more than 300m Predictions 
per Second (AdKDD 24’)



Highly-optimized single-instance learning frameworks
● Vowpal Wabbit
● Fwumious Wabbit

Mainstream frameworks (batch-based, sophisticated 
architectures)
● Torch
● Tensorflow
● Jax
● … In practice: 300m+ 

predictions per second





A Bag of tricks

● Architecture of the DeepFFMs considered

● Hogwild-based training

● Sparse gradient updates

● Placement of this model in broader (serving) context

● Speeding up serving

● Quantization and weight transfers

https://github.com/outbrain/fwumious_wabbit

https://www.pexels.com/search/cat%20bag/



Architecture

Few main components:

● Initially just FFMs + LR

● Deep block showed 
substantial lifts



A benchmark

● Same amount of compute “per search”

● Data sets with higher volatility - 
single-instance learning shines

● Single-instance learning more stable 
(median window perf)

● Vowpal works well too



Curve-based analysis reveals much more than just pushing one scalar



Model warmup

…

A model

Sands of time

Data chunk

Data



Main issue - too slow

Key idea: Embrace the race condition 
(data-level), and just merge outputs of updates. 

Small drop/non-deterministic nature for the 
benefit of much faster training.



Sparse weight updates

Sometimes, instance-level update kind of 
makes no sense, resulting in zero global 
gradient ..

● Rewriting “deep” part of FW so that it 
accounts for this property enables skipping 
whole branches of backprop/update 
logic, substantially speeding up training.

● Basically “if gradient at this point == 0, just 
skip a lot of code”



SIMD-based forward pass

● Single Instruction, Multiple Data

+

+

+

+

=

=

=

=

+ =SIMD

no SIMD



Context caching

● Context = same, candidates = different (per 
batch)

● What if we cached context (Radix tree-based 
cache)?

Context

Candidates



Reminder: training -> serving

…

Serving layer

Many requests

A model

t1 t2 t3 t4 t5 t6



Many (different) models!

…

…

…

… …

…

…



~8G -> ~80M



Model diffs

Not everything changes!

Model before Model after

Weights that differ!



Weight patcher

Compute patch

Apply patch

Initial model

New model

= Bytes that differ

Now also open source!

https://github.com/outbrain/fwumious_wabbit/tree/
main/weight_patcher



Quantization algorithm

1. One weight pass to get statistics about weight space

2. Compute quantization bin sizes and bounds + dequant. header

3. Second pass to quantize existing weights and store

4. (Serving) dequantize + serve
((weight - min) / weight_increment).round() -> f16 -> bytes



● Model train ->
● Inference weights ->
● quantization ->
● Patcher ->
● dequantization ->
● Serving layer

f32 -> bf16

bin info -> f32

Doesn’t care, works with bytes directly

Impact: Half the size

Impact: up to 30x 
reduction





What’s next?

● Different structure of deep layers
● Better quantization
● Hogwild alternatives
● Transfer learning
● Different tasks (mlc, mcc)
● Inference quantization


