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Introduction
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The Architecture of Cascade Ranking System

A typical cascade ranking system consists of multiple sequential stages,
including recall, pre-ranking, ranking, and re-ranking stages.

Item 
Corpus

Recall Pre-Ranking Ranking Re-Ranking

Item 1

Item 2

Item 3

Pre-ranking models are required to score a larger number of candidate
items for each user and demonstrate higher inference efficiency than
ranking models.
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Proposed model: RankTower

Designed a novel neural network architecture for effectively and
efficiently learning user-item interactions

Integrated full-stage sampling strategy and hybrid loss function to
learn ordering dynamics within a cascade ranking system

Extensive experiments demonstrates proposed model significantly
outperforms state-of-the-art pre-ranking models on public datasets
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RankTower
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The Architecture of RankTower
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The Architecture of RankTower Cont.

Three main components

- Multi-Head Gated Network

- Gated Cross-Attention Network

- Maximum Similarity Layer

Following user-item decoupling paradigm for efficient online serving

Pre-computing and caching user and item representations
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Multi-Head Gated Network
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Gated Cross-Attention Network
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Maximum Similarity Layer

The Maximum Similarity Layer computes the final probability prediction
based on the user and item attended embeddings.

s = (
Hu∑
p=1

Max
q∈{1,··· ,Hi}

COSINE (Ep
u , E

q
i ))/τ (1)

where p and q are the sub-space indexes of user-attended embedding and
item-attended embedding, respectively, and τ is the learnable temperature
scalar for re-scaling the cosine similarity.
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Model Optimization

Sampling Strategy

Label Aggregation

Hybrid Loss Function

YaChen Yan, Liubo Li RankTower August 16, 2024 12 / 25



Full-Stage Sampling Strategy

The RankTower model is trained using user-level listwise samples
containing multiple positive and netagive items. The training samples for
each user are sourced from various stages of the cascade ranking system.

Impression Samples

Candidate Samples

Random Samples
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Label Aggregation

Hard labels: we aggregate labels according to their orders of
importance. In an e-commerce context, one might establish a relative
preference order based on the depth of user feedback, such as
Purchase ≥ Add to Cart ≥ Click.

Soft labels: we use the ranking objective function as aggregation
function.
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Hybrid Loss Function

Distillation Loss (Softmax)

LDistillation(z , p) = −
∑
i∈DI

pi log
exp(zi )∑

j∈DI
exp(zj)

Fine-Grained Ranking Loss (SoftSort)

LSorting(z , y) = −tr
(
Jn
(
SoftSortdτ (y) ◦ logSoftSortdτ (z)

))
Coarse-Grained Ranking Loss (Adaptive Margin Rankmax)

LRankmax(z , y) =
∑
j :yj>0

log
n∑

i=1

(
zi − zj + 1

)
+
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Hybrid Loss Function Cont.
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Experiment
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Experimental Setup

Datasets: Alimama, Taobao, KuaiRand

Evaluation metrics: Recall@K, NDCG@K

Competing models: LR, Two-Tower, DAT, COLD, IntTower, ARF
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Model Performance Comparison

Alimama Taobao KuaiRand
Model Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K

LR 0.4802 0.3237 0.4792 0.2685 0.6713 0.5027
Two-Tower 0.5123 0.3428 0.5019 0.2921 0.6902 0.5258

DAT 0.5161 0.3472 0.5089 0.3013 0.6955 0.5312
COLD 0.5210 0.3518 0.5123 0.3070 0.7011 0.5349

IntTower 0.5215 0.3519 0.5101 0.3051 0.6960 0.5309
ARF 0.5318 0.3655 0.5215 0.3117 0.7096 0.5497

RankTower 0.5462 0.3794 0.5301 0.3223 0.7182 0.5551
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Experiment Results for Different Sampling Strategies

Recall@K NDCG@K

Full-Stage Sampling 0.7182 0.5551
w/o random samples 0.7125 0.5437
w/o candidate samples 0.7040 0.5401
w/o candidate & random samples 0.6981 0.5323
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Experiment Results for Different Ranking Losses

Recall@K NDCG@K

Hybrid Loss 0.7182 0.5551
Sorting 0.7128 0.5516
AM-Rankmax 0.7132 0.5507
Rankmax 0.7105 0.5492
Softmax 0.7109 0.5498
ApproxNDCG 0.7006 0.5436
RankNet 0.7072 0.5452
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Experiment Results for Different Distillation Losses

Recall@K NDCG@K

Distillation (Softmax) 0.7182 0.5551
Distillation (Weighted Logloss) 0.7130 0.5519
Distillation (Pairwise Logloss) 0.7071 0.5432
No Distillation 0.7108 0.5495
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Conclusions
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Conclusions

RankTower architecture is effectively and efficiently capturing
bi-directional latent user-item interactions by integrating Multi-Head
Gated Network, Gated Cross-Attention Network, and Maximum
Similarity Layer.

The integrated full-stage sampling strategy and hybrid loss function
ensure the ranking consistency within cascade ranking system
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End

Thank You!
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