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ABSTRACT
Motivated by problems arising in digital advertising, we study the
task of training differentially private (DP) machine learning models
with semi-sensitive features. In this setting, a subset of the features
is known to the attacker (and thus need not be protected) while the
remaining features as well as the label are unknown to the attacker
and should be protected by the DP guarantee. This task interpolates
between training the model with full DP (where the label and all
features should be protected) or with label DP (where all the features
are considered known, and only the label should be protected). We
present a new algorithm for training DP models with semi-sensitive
features. Through an empirical evaluation on ads datasets, we demon-
strate that our algorithm surpasses in utility the baselines of (i) DP
stochastic gradient descent (DP-SGD) run on all features (known
and unknown), and (ii) a label DP algorithm run only on the known
features (while discarding the unknown ones).
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1 INTRODUCTION
In recent years, large-scale machine learning (ML) algorithms have
been adopted and deployed for different ad modeling tasks, includ-
ing the training of predicted click-through rates (a.k.a. pCTR) and
predicted conversion rates (a.k.a. pCVR) models. Roughly speaking,
pCTR models predict the likelihood that an ad shown to a user is
clicked, and pCVR models predict the likelihood that an ad clicked
(or viewed) by the user leads to a conversion—which is defined as a
desirable action by the user on the advertiser site or app, such as the
purchase of the advertised product.
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Heightened user expectations around privacy have led different
web browsers (including Apple Safari [27], Mozilla Firefox [30], and
Google Chrome [21]) to the deprecation of third-party cookies (3PC),
which are cross-site identifiers that had hitherto allowed the joining
in the clear of the datasets on which the pCTR and pCVR models
are trained. More precisely, 3PCs previously allowed determining
the conversion label for pCVR models as well as the construction
of features (for pCTR and pCVR models) that depend on the user’s
behavior on sites other than the publisher where the ad was shown.

In order to support essential web functionalities that are affected
by the deprecation of 3PCs, different web browsers have been
building privacy-preserving APIs, including for ads measurement
and modeling such as the Interoperable Private Attribution (IPA)
developed by Mozilla and Meta [25], Masked LARK from Mi-
crosoft [16, 19], the Attribution Reporting API, available on both
the Chrome browser [18] and the Android operating system [2], and
the Private Click Measurement (PCM) [28] and Private Ad Mea-
surement (PAM) APIs [29] from Apple. The privacy guarantees of
several of these APIs rely on differential privacy (DP) [6, 7], which
is a strong and robust notion of privacy that has in recent years
gained significant popularity for data analytics and modeling tasks.

Different DP variants have been studied in the context of su-
pervised ML, depending on the adjacency definition. The standard
definition of DP protects the full training example (features and
label) and has been extensively studied, e.g., Abadi et al. [1]. On
the other hand, Label DP (e.g., Chaudhuri and Hsu [4], Ghazi et al.
[9], Malek Esmaeili et al. [14]) is a variant that only protects the
label of each training example, and is thus suitable in settings where
the adversary already has access to the features.

Label DP is a natural fit for the case where the features of the
pCVR problem do not depend on cross-site information. However, a
common setting, including that of the Protected Audience API on
Chrome [5] and Android [3], is where some features depend on cross-
site information whereas the remaining features do not. An example
is the remarketing use case where a feature could indicate whether
the same user previously expressed interest in the advertised product
(e.g., added it to their cart) but did not purchase it. Revealing a row
of the database that has both contextual features (e.g., the publisher
site, or the time of day the ad was served) and features derived on
the advertiser (e.g., user presence on a particular remarketing list)
could allow an attacker to track a user across sites. In the Protected
Audience API, these sensitive features are protected by multiple
privacy mechanisms including feature-level randomized response.

The focus of this work is to analyze this setting from the DP
perspective; we refer to it as DP model training with semi-sensitive
features. We formalize this setting, present an algorithm for training
private ML models with semi-sensitive features, and evaluate it on
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real ad prediction datasets, showing that it compares favorably to
natural baselines.1 We report the effect of certain important param-
eters on utility, and also study the trade-offs between the size of
the private model and its quality – this is motivated by practical
settings, in which the private ML model training may happen in
Trusted Execution Environments with limited memory.

2 RELATED WORK
Two related notions of private model training with partially private
features were recently proposed, although they differ slightly in
their adjacency definitions (and hence in what is considered public
information): Krichene et al. [11] propose a stronger notion in which
the adversary is only assumed to know the set of distinct values that
the non-sensitive features may take, for example the feature values
of all possible ads, (while in our notion, we assume the adversary
knows which specific values appeared in the dataset, together with
their counts). And in a concurrent work [22], an algorithm based on
AdaBoost was proposed under a privacy notion similar to ours; a key
difference is that in their setting, the labels are considered public.

3 DP TRAINING WITH SEMI-SENSITIVE
FEATURES

We consider the setting of supervised learning, where we assume an
underlying (unknown) distribution D over X ×Y, where X denotes
the set of possible inputs and Y denotes the set of possible labels.
In this work, we focus on the binary classification setting where
Y = {0, 1}. Our goal is to learn a predictor 𝐹 : X → R that maps
the input space X to R with the goal of minimizing the expected
loss L(𝐹 ;D) := E(𝑥,𝑦)∼D ℓ (𝐹 (𝑥), 𝑦), where ℓ (·, ·) is a suitable loss
function, e.g., the binary cross entropy loss.

To capture the setting of semi-sensitive features, let X = X◦ ×X•,
where X◦ is the set of possible nonsensitive feature values, and X•

is the set of possible sensitive feature values. We denote a dataset as
𝐷 = ((𝑥◦

𝑖
, 𝑥•

𝑖
, 𝑦𝑖 ))𝑖∈[𝑛] , where 𝑥◦

𝑖
denotes the nonsensitive feature

value, 𝑥•
𝑖

is the sensitive feature value, and 𝑦𝑖 is the corresponding
(sensitive) label. We use 𝑥𝑖 to denote (𝑥◦

𝑖
, 𝑥•

𝑖
) for short. Some prob-

lems that motivate the setting above are in ads modeling tasks, where
the features can include nonsensitive features such as the browser
class, publisher website, category of the mobile app etc., sensitive
features such as how long ago and how many times a user showed
interest in an advertised product etc., and sensitive labels such as
whether the user converted on the ad.

We say that two datasets 𝐷, 𝐷′ are adjacent, denoted 𝐷 ∼ 𝐷′ if
one dataset can be obtained from the other by changing the sensitive
features and/or the label for a single example, namely replacing
(𝑥◦

𝑖
, 𝑥•

𝑖
, 𝑦𝑖 ) with (𝑥◦

𝑖
, 𝑥•

𝑖
, 𝑦𝑖 ) for some (𝑥•

𝑖
, 𝑦𝑖 ) ∈ X• × Y. Note in

particular that 𝑥◦
𝑖

are not allowed to change in the adjacent dataset,
and should be considered known to the adversary.2

Definition 1 (DP; Dwork et al. [7]). For 𝜀, 𝛿 ≥ 0, a randomized
mechanism M satisfies (𝜀, 𝛿)-DP if for all pairs 𝐷, 𝐷′ of adjacent
datasets, and for all outcome events 𝐸, it holds that Pr[M(𝐷) ∈
𝐸] ≤ 𝑒𝜀 · Pr[M(𝐷′) ∈ 𝐸] + 𝛿 .
1A preliminary version of this paper was presented at PPAI-24: The 5th AAAI Workshop
on Privacy-Preserving Artificial Intelligence.
2Contrast this with the notion of DP with public features of [12], in which 𝑥◦

𝑖 is allowed
to change, as long as it takes values in the publicly known X◦.

For an extensive overview of DP, we refer the reader to the mono-
graph of Dwork and Roth [8]. We use the following key properties
of DP.

PROPOSITION 2 (COMPOSITION). If M1 satisfies (𝜀1, 𝛿1)-DP,
and M2 satisfies (𝜀2, 𝛿2)-DP, then the mechanism M that on dataset
𝐷 returns (M1 (𝐷),M2 (𝐷)) satisfies (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-DP. Further-
more, this holds even in the adaptive case, when M2 can use the
output of M1.

PROPOSITION 3 (POST-PROCESSING). If M satisfies (𝜀, 𝛿)-DP,
then for all (randomized) algorithms A, it holds that A(M(·))
satisfies (𝜀, 𝛿)-DP.

Randomized Response. Perhaps the simplest mechanism that sat-
isfies DP, even predating its definition, is Randomized Response. We
state the mechanism in our context as releasing the known features
along with the corresponding randomized (binary) label.

Definition 4 (Randomized Response; Warner [26]). For 𝜀 > 0, the
mechanism RR𝜀 on dataset𝐷 = ((𝑥◦

𝑖
, 𝑥•

𝑖
, 𝑦𝑖 ))𝑖∈[𝑛] returns ((𝑥◦

𝑖
, 𝑦𝑖 ))𝑖∈[𝑛]

where each 𝑦𝑖 is set to 𝑦𝑖 with prob. 𝑒𝜀

1+𝑒𝜀 and to 1 − 𝑦𝑖 with prob.
1

1+𝑒𝜀 .

PROPOSITION 5. RR𝜀 satisfies (𝜀, 0)-DP.

SGD and DP-SGD. Let 𝐹𝒘 be a parameterized model (e.g., a
neural network) with trainable weights𝒘, and {(𝑥1, 𝑦1), . . . , (𝑥𝐵, 𝑦𝐵)}
be a random mini-batch of training examples. Let 𝐿𝑖 = ℓ (𝐹𝒘 (𝑥𝑖 ), 𝑦𝑖 )
be the loss on the 𝑖th example and let the average loss be 𝐿 :=
1
𝐵

∑𝐵
𝑖=1 𝐿𝑖 . Recall that standard training algorithms compute the av-

erage gradient ∇𝒘𝐿 and update𝒘 with an optimizer such as SGD or
Adam. Even though various optimizers could be used, we will refer
to this class of (non-private) methods as SGD.

DP-SGD [1] is widely used for DP training of deep neural net-
works, wherein the per-example gradients ∇𝒘𝐿𝑖 are computed, and
then re-scaled to have an ℓ2-norm of at most 𝐶, as 𝒈𝑖 := ∇𝒘𝐿𝑖 ·
min{1, 𝐶

∥∇𝒘𝐿𝑖 ∥2
}. Gaussian noise N(0,𝐶2𝜎2𝑰 ) is then added to the

average 1
𝐵

∑𝐵
𝑖=1 𝒈𝑖 and subsequently passed to the optimizer. As

shown by Abadi et al. [1], DP-SGD satisfies (𝜀, 𝛿)-DP where 𝜀, 𝛿

depend on 𝜎 , the batch size and number of training steps; this can
be computed using the privacy accounting described in [1].

4 ALGORITHMS
We now describe the family of algorithms we use for DP training
with semi-sensitive features. Consider a model, such as a deep neural
network, parameterized by𝒘. We will use the following high-level
architecture:

𝐹𝒘 (𝑥◦, 𝑥•) := 𝑓𝒘c
(
𝑔𝒘◦ (𝑥◦), ℎ𝒘• (𝑥•)

)
,

where𝒘 = (𝒘◦,𝒘•,𝒘c), 𝑔𝒘◦ : X◦ → R𝑑◦ is a nonsensitive tower (i.e.
the part of the model that acts on the nonsensitive features), ℎ𝒘• :
X• → R𝑑• is a sensitive tower (acting on the sensitive features), and
𝑓𝒘c : R𝑑◦ × R𝑑• → R is a common tower.

We also consider a truncated model that uses the same parameters
𝒘◦ and𝒘c, but does not depend on𝒘•, by eliminating the dependence
on 𝑥•, defined as follows:

𝐹𝒘◦,𝒘c (𝑥◦) := 𝑓𝒘c (𝑔𝒘◦ (𝑥◦), 0) ,
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where 0 ∈ R𝑑• . For convenience, we use the following notation for
the losses of each of these models:

𝐿(𝒘 ;𝑥,𝑦) := ℓ (𝐹𝒘 (𝑥), 𝑦),
𝐿(𝒘◦,𝒘c;𝑥,𝑦) := ℓ (𝐹𝒘◦,𝒘c (𝑥◦), 𝑦) .

Given a total privacy budget of (𝜀, 𝛿), we consider learning algo-
rithms that execute two phases sequentially that satisfy (𝜀1, 0)-DP
and (𝜀2, 𝛿)-DP respectively such that 𝜀1 + 𝜀2 = 𝜀 and hence by Propo-
sition 2, the algorithm satisfies (𝜀, 𝛿)-DP. We refer to this algorithm
as Hybrid, and these phases are as follows:
Label-DP Phase. In this phase, we first apply RR𝜀1 to generate
((𝑥◦

𝑖
, 𝑦𝑖 ))𝑖∈[𝑛] , i.e., a dataset where the sensitive 𝑥•

𝑖
’s are removed

and the labels are randomized. Then, we train the truncated model
𝐹𝒘◦,𝒘c (·) on this data for one or more epochs of mini-batch SGD.
By Proposition 5 and Proposition 3, this phase satisfies (𝜀1, 0)-DP.
To remove the bias introduced by the noisy labels, we define 𝑝 :=
1/(1 + 𝑒−𝜀1 ) and modify the training loss as follows:

�̃�(𝒘◦,𝒘c;𝑥◦𝑖 , 𝑦𝑖 ) =
𝐿(𝒘◦,𝒘c;𝑥◦

𝑖
, 1 − 𝑦𝑖 ) − 𝑝

∑
𝑦′∈{0,1} 𝐿(𝒘◦,𝒘c;𝑥◦

𝑖
, 𝑦′)

1 − 2𝑝
.

DP-SGD Phase. In this phase, we train the entire model 𝐹𝒘 (·), by
warm-starting it from the 𝐹𝒘◦,𝒘c model of the first phase, then train-
ing for one or more epochs of DP-SGD. We propose two variants:
in the first, we freeze the sensitive tower 𝑔𝒘◦ , and in the second, we
fine-tune it. The noise parameter 𝜎 is chosen appropriately so that
this phase satisfies (𝜀2, 𝛿)-DP; in our work, we do this accounting
using Rényi DP [1, 17], though other accounting techniques could
be used, such as privacy loss distributions (PLD) [15, 23].

5 EXPERIMENTAL RESULTS
We consider two natural baselines: DP-SGD (where all features are
treated as sensitive) and RR on the truncated model 𝐹𝒘◦,𝒘c (where
the sensitive features are discarded and only the labels are protected).
Note that both can be viewed as special cases of Hybrid, where
we use all the privacy budget in one of the two phases: DP-SGD
corresponds to setting 𝜀1 = 0 and 𝜀2 = 𝜀; and RR corresponds to
setting 𝜀1 = 𝜀 and 𝜀2 = 0.

The Hybrid algorithm allows using a different split between the
two phases. A total privacy budget (𝜀, 𝛿) will be split into (𝜀1, 0) and
(𝜀2, 𝛿). Since this budget allocation may have an impact on model
quality, we will vary it in our experiments as follows:

𝜀1 := 𝑘 · 𝜀 , 𝜀2 := (1−𝑘) · 𝜀 , where 𝑘 ∈ {0, 0.25, 0.5, 0.75, 1},
(the cases 𝑘 = 0, 𝑘 = 1 correspond to DP-SGD and RR, respectively).

We train binary classification models with binary cross-entropy
loss and report it together with the AUC loss (defined as 1 − AUC).
We study the trade-offs between privacy and utility, as well as model
size and utility.

5.1 Models
We evaluate two model classes for 𝐹𝒘 : multilayer perceptrons (MLP)
and factorization machines (FM).

Multilayer perceptron. In the MLP models, we concatenate the
outputs of the sensitive and nonsensitive towers before feeding them
into joint fully connected layers:

𝐹𝒘 (𝑥◦, 𝑥•) := 𝑓𝒘c (𝑔𝒘◦ (𝑥◦) ◦ ℎ𝒘• (𝑥•)) ,

where 𝑔𝒘◦ : X◦ → R𝑑◦ , ℎ𝒘• : X• → R𝑑• , 𝑓𝒘c : R𝑑◦+𝑑• → R and
𝑢 ◦ 𝑣 denotes concatenation of the vectors 𝑢 and 𝑣 .

Factorization Machine. A factorization machine (FM) [20] em-
beds each feature into a 𝑑 = 𝑑◦ = 𝑑• dimensional embedding and
builds all pairwise dot products between all features. We shortly
summarize how FM can be cast into our notation of 𝐹𝒘 . The parame-
ters of the FM model consist of (i) embeddings for the sensitive and
nonsensitive features𝒘◦ ∈ RX◦×𝑑 and𝒘• ∈ RX•×𝑑 , and (ii) a bias
𝒘c ∈ R. The combination function 𝑓𝒘c consists of a sum of three
different terms: the global bias 𝒘c, linear effects that are encoded
in the first dimension of 𝑔 and ℎ, and pairwise interactions of the
remaining dimensions:

𝑓𝒘c (𝑔, ℎ) = 𝒘c
1 + 𝑔1 + ℎ1 + ⟨𝑔2...𝑑 , ℎ2...𝑑 ⟩ . (1)

Unlike an MLP, FM does not have parameters (besides a bias) in
the combiner function and does not need to learn how to combine
embeddings. The towers are computed by:

𝑔𝒘◦ (𝑥◦)1 = ⟨𝑥◦,𝒘◦
·,1⟩ +

∑︁
𝑗

∑︁
𝑘> 𝑗

𝑥◦𝑗 𝑥
◦
𝑘

〈
𝒘◦
𝑗,2...𝑑 ,𝒘

◦
𝑘,2...𝑑

〉
. (2)

𝑔𝒘◦ (𝑥◦)2...𝑑 =
∑︁
𝑗

𝑥◦𝑗𝒘
◦
𝑗,2...𝑑 . (3)

The sensitive tower is computed analogously.
See Appendix A for further details about the experimental setup.

5.2 Criteo Display Ads pCTR Dataset
The first benchmark we consider is a pCTR prediction task on the
Criteo Display Ads Dataset [10], which contains around 40 million
examples. The dataset has a labeled training set and an unlabeled test
set. We only use the labeled training set and split it chronologically
into a 80%/10%/10% partition of train/validation/test sets. Each ex-
ample consists of 13 integer features int-feature-[1-13] and
26 categorical features categorical-feature-[14-39]. Since
the precise interpretation of these features is not available, we ar-
bitrarily consider all even-numbered features as sensitive and all
odd-numbered features as nonsensitive.

For this dataset, the AUC loss of the non-privately trained base-
lines is 0.1941 for the MLP model and 0.1930 for the FM model.

5.3 Criteo Spons. Search Conversion Log Dataset
The second benchmark we consider is a pCVR prediction task on
the Criteo Spons. Search Conversion Log Dataset [24], which con-
tains 16 millions examples. We used a random 80%/20% partition
of train/test sets and the reported metrics are on the test set. The task
considered in this work is a conversion prediction task, predicting
the binary feature Sale (which has 10.8% positive occurrences).
The sensitive features are device_type, audience_id, and
user_id. We consider all other features to be nonsensitive, except
for features denoted Outcome/Labels in [24], and product_price,
all of which are omitted from the model3.

For this dataset, the AUC loss of the non-privately trained base-
lines is 0.2099 for the MLP model, and 0.2154 for the FM model.

3Although product_price is not explicitly marked as a label, it has a very high
correlation with the label and the prediction task would become significantly easier if
we were to include it.
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Figure 1: AUC loss and log loss of (i) MLP model and (ii) FM model trained under various privacy budgets 𝜀 on the Criteo Display Ads
pCTR dataset.
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Figure 2: AUC loss and log loss of (i) MLP model and (ii) FM model trained under various privacy budgets 𝜀 on the Criteo Sponsored
Search Conversion Log dataset.

5.4 Results
5.4.1 Improved privacy-utility trade-off. Privacy-utility trade-
offs on Criteo Display Ads and Criteo Spons. Search are reported
in Figures 1 and 2 respectively. On both benchmarks, we find that
Hybrid improves over RR and DP-SGD across a range of privacy
budgets. Specifically, we see an improvement in utility for both
the MLP and FM models when 𝜀 ≥ 4. In this regime, there are
substantial improvements: for instance, Hybrid achieves a better
utility at 𝜀 = 8 than DP-SGD at 𝜀 = 12 (this is the case for both
datasets and both models).

This significantly narrows the gap between the private model and
the non-private baselines on Criteo Display Ads. For example, at 𝜖 =

12, the relative increase in AUC loss (defined as 1−AUC
1−AUCnon-private

− 1)
goes from 6.3% for MLP-DPSGD to 3.2% for MLP-Hybrid; and it
goes from 3.0% for FM-DPSGD to 1.2% for FM-Hybrid. In both
cases, the gap to the non-private model is approximately halved.

However, in the higher privacy regime (for 𝜀 = 1), the quality
of the Hybrid-trained models appears to deteriorate, and in most
cases it no longer improves upon DP-SGD. We believe this may be
because the utility of the RR algorithm significantly deteriorates for
small 𝜀, and there may no longer be a benefit to the Label-DP phase
in this regime.

It is also worth observing that the loss of the RR model plateaus
at a value that is much higher than other methods – recall that the RR
model is only trained on the non-sensitive features, hence its quality
is limited by the best model one can train on these features alone.
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Figure 3: Effect of the budget split 𝑘 = 𝜖1/𝜖 on AUC loss for the
FM model, with 𝜀 = 12, on (i) Criteo Display Ads pCTR dataset
and (ii) Criteo Spons. Search Conversion Log dataset.

5.4.2 Freezing vs fine-tuning. Freezing the sensitive tower dur-
ing the second phase may offer a computational advantage, as one
no longer needs to compute/clip gradients of this tower.

To understand the impact this may have on quality, we compare
the two Hybrid variants (frozen and fine-tuned). We observe that
in some settings (specifically on Criteo Display Ads in the high
𝜖 regime, see Figure 1), freezing can achieve comparable quality
to fine-tuning. In all other cases, fine-tuning generally achieves
better utility. In particular, for the Criteo Spons. Search dataset
(see Figure 2), freezing leads to a significant degradation across
all values of 𝜖. This indicates that freezing, while computationally
advantageous, may come at a high utility cost in practice.

5.4.3 Effect of budget split. To further understand the effect of
the budget split, we report, in Figure 3, the AUC loss of the Hybrid
FM models, as we vary the budget allocation ratio 𝑘 =

𝜀1
𝜀 . First,
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observe that for 𝜀 = 1, the best utility is achieved when 𝑘 = 0 (which
corresponds to the special case of DP-SGD); this is consistent with
the results of Section 5.4.1. As 𝜀 increases (4 ≤ 𝜀 ≤ 8), we observe
that the optimal 𝑘 increases, and the best utility is typically achieved
when 𝑘 ≥ 0.5, i.e. one benefits from spending a significant part of the
budget on the RR phase. Finally, in the high 𝜀 regime (𝜀 = 12), the
optimal 𝑘 decreases again, and is equal to 𝑘 = 0.25 in both datasets.
This may be explained by the fact that the utility of the RR-trained
model plateaus when 𝜖 grows (see Figure 1-(ii) and Figure 2-(ii)), so
one may not benefit from spending a higher budget on the RR phase.

Given the large impact the budget ratio 𝑘 has on quality, one
should generally treat it as an important parameter to tune when
using the Hybrid method, and it should be tuned separately for
different values of 𝜖.
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Figure 4: AUC loss and log loss of FM model trained under
various private model sizes at 𝜖 = 12 on the Criteo Display
Ads pCTR dataset. The 𝑥-axis denotes the vocabulary size of the
sensitive tower.

5.4.4 Model-size utility trade-off. In situations in which the
DP-SGD phase of training happens in Trusted Executions Envi-
ronments, one may be faced with stringent memory and compute
constraints. In such scenarios, it is important to understand the trade-
offs between utility and the size of the private model.

We vary the private model size on the Criteo Display Ads pCTR
dataset, by varying the vocabulary size of the sensitive tower (this is
done by computing privatized counts of the sensitive feature values,
and keeping only features above a threshold. Varying the threshold
leads to different model sizes). We report the results in Figure 4,
for 𝜀 = 12. Here the largest model size corresponds to the results
reported in Figure 1.

We observe that for a large range of model sizes, the deteriora-
tion in quality is surprisingly low. For example, focusing on the
fine-tuned variant, when decreasing the model size ten-fold, the
log loss of the FM model increases by 0.027%, and its AUC loss
increases by 0.025%. When decreasing the model size fifty-fold, the
log loss increases by 0.059% and the AUC loss by 0.078%. The loss
remains well below that of the full-sized model at 𝜖 = 8 (denoted
by the dashed lines on the figure). This indicates that for these two
benchmarks, one may train significantly smaller models under DP
constraints without largely sacrificing quality.

6 CONCLUSION AND FUTURE DIRECTIONS
In this work, we studied training DP models with semi-sensitive
features, and presented an algorithm that improves over two natural
baselines on real ad modeling datasets.

Our experiments indicate that in the high privacy regime, it is
difficult to improve upon DPSGD. This invites further investigation
into this regime, either theoretically (by studying utility bounds),
or experimentally. An interesting direction to explore is the use of
label DP primitives beyond RR, e.g., [9, 14], particularly ones that
perform better for smaller 𝜀.

Another open question is the precise characterization of the differ-
ences (both in terms of privacy guarantees and potential utility gap)
between the notion of “DP with semi-sensitive features” studied in
this work, and “DP with public features” from [11].
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A TRAINING DETAILS
In both Criteo datasets used in this work, the sensitive features (resp.
nonsensitive features) are fed into a single embedding layer: each
value of a sensitive (resp. nonsensitive) feature is concatenated to its
feature name to form a unique string. These string values are then
either hashed with a fixed number of hash bins, or a vocabulary of
all sensitive (nonsensitive) strings is created, where only frequent
values are kept while the remaining values are mapped to a single
out-of-vocabulary token. In all our experiments reported here we
use an embedding dimension of 32. The model size is therefore
controlled either by the number of hash bins for the sensitive and
nonsensitive features, or by frequency thresholds defining the the
sensitive and nonsensitive vocabularies. In the latter case, we com-
pute the frequency counts of the nonsensitive feature values exactly,
while the counts of the sensitive features are computed privately,
consuming a portion of the total privacy budget. We report the pri-
vacy parameters assuming that the vocabulary is known and only the
counts are private; without this assumption the privacy 𝜀 increases
by at most 0.007 compared to the reported numbers.

We compare these two strategies (hashing vs vocabulary thresh-
olding) on the Criteo Display Ads pCTR dataset, and report the
results in Figure 5. We find that the two approaches yield similar
quality at the same model size (with a slight advantage to the vocab
thresholding approach).
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Figure 5: Privacy-utility trade-off of the fine-tuned Hybrid FM
model on Criteo Display Ads, under hashing vs vocab threshold-
ing.

When using thresholding in Criteo Display Ads, we used a vo-
cab threshold of 16 for non-sensitive features, and a threshold in
{16, 64, 256, 1024, 4096} for sensitive features (this controls the sen-
sitive tower size). On the Criteo Sponsored Search Conversion Log
dataset, we opt for the simpler hashing approach, with 50k (resp.
100k) hash bins for the sensitive (resp. non-sensitive) features.

All features in both datasets being univalent, each example is
transformed into a fixed number of embeddings, 19 sensitive and 20

nonsensitive embeddings for the Criteo Display Ads pCTR dataset,
and 3 sensitive and 17 nonsensitive4 embeddings for the Criteo
Sponsored Search Conversion Log dataset.

Multilayer Perceptron. For the Criteo Display Ads pCTR dataset,
the 20 nonsensitive features are concatenated and fed into a single
fully connected layer with 598 hidden units and using a ReLU acti-
vation function. The output of this layer is concatenated with the 19
embeddings of the sensitive features, and these are fed into two fully
connected layers, each also containing 598 hidden units and using a
ReLU activation function. The final output is a linear combination
of the last layer which produces a scalar logit prediction. We use
the Yogi optimizer [31] with a base learning rate of 0.01 and a batch
size of 1024 for our baseline and for the RR phase of training. We
use SGD with a base learning rate of 0.1, momentum 0.9, and batch
size of 16384 for the DP-SGD phase of training. For both, we scale
the base learning rate with a cosine decay [13]. We train with 10 RR
epochs and 50 or 100 DP-SGD epochs, and we tune the norm bound
𝐶 ∈ [10, 50].

For the Criteo Sponsored Search Conversion Log dataset dataset,
the 17 nonsensitive features are concatenated and fed into a single
fully connected layer with 256 hidden units and using a ReLU acti-
vation function. The output of this layer is concatenated with the 3
embeddings of the sensitive features, and these are fed into two fully
connected layers, each also containing 256 hidden units and using a
ReLU activation function. The final output is a linear combination
of the last layer which produces a scalar logit prediction. We use the
Adam optimizer with batch size of 1024 for the RR phase of training,
and a batch size of 16384 for the DP-SGD phase of training. We train
with 16 RR epochs and 64 DP-SGD epochs, and we tune the clipping
norm 𝐶 ∈ [10, 30].

Factorization Machine. A linear model composed of a bias term
and 20+19 (resp. 17+3) linear coefficients complements the above
mentioned embeddings for the Criteo Display Ads pCTR dataset
(resp. the Criteo Sponsored Search Conversion Log dataset). The
scalar logit prediction is the sum of this linear model and all the
pairwise dot-products of the 39 (resp. 20) embeddings. We use the
Adam optimizer with a batch size of 16384 for all our experiments.
In an initial hyper-parameter search we also tuned the standard de-
viation of the random initialization 𝜎 of all model parameters, as
well as the regularization 𝜇 of the embeddings and we settled on
𝜎 = 10−2 and 𝜇 ∈ {10−2, 10−3, 10−4, 10−5} for all experiments. In
practice, the regularization parameter had little impact. The most
important parameters to tune are the learning rate (tuned in the range
[10−5, 10−3]) and the clipping norm (tuned in the range [10, 30].
Note that we did not distinguish the dataset used for hyper-parameter
tuning from the one used to report the final metrics as our experi-
ments on the Criteo Display Ads pCTR dataset showed virtually no
difference between metrics measured on either sets.

Finally, we note that the optimal hyper-parameters tend to differ
when optimizing for AUC loss vs log loss. In particular, we found
that good models in terms of log loss tend to require much larger
clipping norms than models optimizing AUC.

4click_timestamp is replaced by two features: click_hour_of_day and
click_day_of_week, and nbr_clicks_1week is replaced by its log2 trans-
formed value.
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