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ABSTRACT
Predicting the click-through rate (CTR) in online ad auctions is es-
sential for calculating bid amounts and forming rankings. However,
predicting CTR from historical data faces some difficulties, one of
which is the cold-start problem. Our research uses the instrumental
variables (IVs) framework to address the cold-start problem and se-
lection bias, validating robust CTR prediction in online advertising
auctions. Although generally identifying IVs in wide applications
is notably challenging, their potential use is not limited to CTR
prediction; they can potentially be used to address practical issues
and research questions in advertising auctions in general. We put
forth bid amounts as IVs, discussing their validity as IVs and testing
the robustness of predictions using IVs in both simulations and
real data scenarios. Moreover, we enhanced our methodology by
integrating explicit interactions between bid amounts and other
features, demonstrating that accounting for heterogeneity in IVs
significantly improves prediction accuracy in actual data. Our pro-
posal on IVs and its refined CTR prediction approach enriches
the research fields on causal inference robustness and invariant
prediction.
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1 INTRODUCTION
Online advertising, an essential backbone of the digital economy,
relies heavily on accurate prediction models to allocate ads effec-
tively and enhance the user experience. Crucially, the accuracy of
click-through rate (CTR) prediction plays a pivotal role in determin-
ing the success in terms of welfare of of online advertising auctions,
and at the same time, hover the potential biases that may skew
results [4, 11].

In addition to the problem of bias that lurks in some online ad
auctions and is often the subject of research, the cold-start problem
arises when we must make predictions for new advertisements or
infrequent users, leading to decreased predictive accuracy. Against
the backdrop of problems arising from those various factors, causal
methods of predicting user behavior that capture invariant user
behavior have risen as a subject of high research interest [3, 5,
9]. Among them, prior research [3] has highlighted that one of
those causal methods, the instrumental variables (IVs) method, has
the potential to contribute to solving the cold-start problem. [8]
provided a methodology for IVs using neural networks, but specific
IVs always need to be identified in a specific research domain. [13]
uses the user’s search query as an instrumental variable; their use
of IVs is limited to search advertising and may not satisfy one of
the conditions for IVs, the exclusion restriction.

In this paper, we identify bid amounts as IVs in online ad auction
settings and demonstrate that click prediction using the IVs method
exhibits robust predictions in the overall prediction and cold start
problems.

Although IVs are generally considered difficult to identify, they
have the potential to: 1) maximize the use of data, including impres-
sions of ads with low historical win rates; 2) not require random
impressions of ads; 3) avoid assumptions that often lead to erro-
neous predictions due to the unrealistic absence of unobserved
confounding factors between treatment and outcome relationships
[10]; and 4) potentially infer the causal effect of impressions on
conversion as well as clicks.

Furthermore, we demonstrate that the explicit use of first-stage
heterogeneity in the IVs method can be strongly recommended
in online ad auctions [1, 2]. First-stage heterogeneity in the IVs
method has been relatively overlooked compared to heterogeneity
in the second stage, namely, user response. However, we find that
increasing the association between IVs and impression probability
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shows robust predictions for the overall prediction and the cold-
start problem.

The contributions of the paper have three main points:
(1) We identify and propose valid IVs tailored to online advertis-

ing auctions. The IVs suit broad advertising auction contexts,
including display and search advertising. Furthermore, the
IVs method is expected to have further applications such
as causal inference of medium- and long-term effects of ad
impressions on conversions, etc., not limited to causal effects
on user click behavior in online ad auctions.

(2) There have been few empirical examples the IVs method has
been demonstrated to be capable of making invariant behav-
ioral predictions.We identify valid IVs for further application
in the setting of online ad auctions, a setting in which the
research field has been broaden, and demonstrated the ro-
bustness of the IVs method’s prediction accuracy for the
overall forecast and the cold-start scenario in our experi-
ments.

(3) Notably, our research advances the concept of utilizing the
first stage heterogeneity in the IVs method in the context of
prediction. By considering heterogeneity in the strength of
IVs concerning impression probability, our method shows
more significantly robust prediction performance in whole
prediction and the cold-start scenario.

2 IDENTIFICATION OF INSTRUMENTAL
VARIABLES IN AD AUCTIONS

2.1 Ad Auctions and Biases

Data Imbalance Score Prediction

𝑡𝑎𝑟𝑔𝑒𝑡	𝐶𝑃𝐴 𝑋!! 		×		𝒑𝑪𝑽𝑹 𝒚𝒄𝒐𝒏𝒗𝒆𝒓𝒔𝒊𝒐𝒏,!! = 𝟏	 	𝑿!! , 	𝑫!!= 𝟏)

𝐴𝑢𝑐𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒!! 	= 		𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅	𝑩𝒊𝒅 𝑋!! , 	𝐷!!= 1
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+			𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑇𝑒𝑟𝑚(𝑋!!)

𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑒𝑟𝑠	𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦	𝑠𝑒𝑡	𝑏𝑖𝑑	𝑎𝑚𝑜𝑢𝑛𝑡𝑠	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑛	𝑋!!

Ad Impression

User Response

𝑜𝑟
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Ad Auction

Ad Non-Impression
Inductive Bias

Selection Bias

Exposure Bias

Popularity Bias

𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦

Figure 1: Inductive, Selection, Exposure, and Popularity Bias
in Users’ Click Behavior and Ad Auction System

Before we explain that the bid amounts is IVs, we describe the
setting in ad auctions. This is because it is essential to examine the
actual flow of data generation to ascertain the IVs.

The notations used to describe the auction mechanism are as
follows: the total number of auctions is N, the number of auctioneers
participating in auction 𝑖 ∈ {1, · · · , 𝑁 } is𝑚𝑖 , and the auctioneer’s
advertisement is 𝑗𝑖 ∈ {1, · · · ,𝑚𝑖 }. Let 𝐵𝑖𝑑 𝑗𝑖 be the bid amount
that the auctioneer spends on the ad 𝑗𝑖 , 𝑝𝐶𝑇𝑅 𝑗𝑖 be the predictive
click-through-rate, and 𝑗∗

𝑖
be the ad that wins an impression to

the user in the auction 𝑖 . Also, 𝑦 𝑗𝑖 is the outcome that is 1 if ad
𝑗𝑖 is clicked and 0 if not, 𝑋 𝑗𝑖 is a variables vector used to target

ads and users in ad 𝑗𝑖 . To simplify complex effects such as position
bias, we assume a setting where there is only one ad that wins an
impression. Therefore, let 𝐷 𝑗𝑖 be a binary dummy that is 1 when
𝑗𝑖 = 𝑗∗

𝑖
and 0 otherwise. Also, let 𝑦 𝑗𝑖 be the outcome that is 1 if the

ad 𝑗∗
𝑖
is clicked and 0 otherwise.

Here, 𝑝𝐶𝑇𝑅 𝑗𝑖 is as followed:

𝑝𝐶𝑇𝑅 𝑗𝑖 = 𝑝 (𝑦 𝑗𝑖 = 1|𝐷 𝑗𝑖 = 1, 𝑋 𝑗𝑖 ),
where 𝑝𝐶𝑇𝑅 𝑗𝑖 is the probability of whether ad 𝑗𝑖 will be clicked
given winning impression, target and other variables.

In ad auctions, there can be various methods for determining
auction scores. Here, for instance, the auction score is calculated as
follows:

𝐴𝑢𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 𝑗𝑖 = 𝐵𝑖𝑑 𝑗𝑖 × 𝑝𝐶𝑇𝑅 𝑗𝑖 ,
This determination scheme, which takes into account bid amount
and predictive CTR in the auction score, has been studied under the
name "weighted GSP" [14, 15]. When the bid amount is a manual
bid by the auctioneer, it is generated from the distribution of bid
amounts conditional on the target variable of the ad set by the
auctioneer. Alternatively, when the bid amount is an automated
bid by the platform, the bid amount is generated by, for example,
predictive conversion rate (pCVR) and target CPA. In this case,
𝑝𝐶𝑉𝑅 𝑗𝑖 is a function of 𝑋 𝑗𝑖 . That is, bid amounts is generated from
some distribution conditioned on the target variables of the ad set
by the auctioneer or other variables used by the platform. Thus,

𝐵𝑖𝑑 𝑗𝑖 ∼ 𝐹 (𝑋 𝑗𝑖 ),
where 𝐹 (·) is the generated distribution of bid amounts.

As summarized by [4], bias in the recommendation system is
a looping process. Figure 1 depicts the looping of several biases,
focused in ad auctions setting, which are interdependent. In par-
ticular, the auction score will be biased if the platform’s prediction
of the pCTR is a biased estimator. The same is true for pCVR and
adjust term. The assignment of impressions by the auction score
with bias is as follows:

𝑗∗𝑖 = argmax
𝑗𝑖 ∈{1,· · · ,𝑚𝑖 }

𝐴𝑢𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒biased𝑗𝑖
.

2.2 Causal View of Online Ad Auctions
Treatment 𝐷 𝑗𝑖 , impressions in ad auctions, can be easily correlated
with the error term for the unobserved heterogeneity of users’ click
behavior. This can be explicitly expressed in the pCTR formulation
as follows:

𝑝 (𝑦 𝑗𝑖 = 1) := 𝜃∗ (𝑋 𝑗𝑖 , 𝜂 𝑗𝑖 , 𝜖 𝑗𝑖 |𝐷 𝑗𝑖 = 1),
where 𝜖 𝑗𝑖 represents the error term in the user’s click response, and
𝜂 𝑗𝑖 is unobserved heterogeneity of click behavior that correlates
with some or all of𝑋 𝑗𝑖 consisting of user and ad features but cannot
be observed, known as the omitted variable. 𝜃∗ (·) is a function
returns a predictive probability when 𝑦 𝑗𝑖 = 1.

Treatments are determined in the auction system together with
predicted values such as pCTR and pCVR, which are conditioned on
the user and ad features involved in ad auctions, and the advertiser’s
bid amount. At this point, pCTR and pCVR are not conditioned
on omitted variables 𝜂 𝑗𝑖 , which generates a bias in the estimates
of predictive outcome. Since the bid amount is determined from
the predictions with this bias and an auction is formed, there is
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Figure 2: Users’ Click Behavior and Bid Amounts as Instru-
mental Variables in Ad Auctions

a strong suspicion that the impressions 𝐷 𝑗𝑖 are endogenous vari-
ables, which are variables correlated with the error term amplified
through the auction with the omitted variable bias. We consider the
assumption that no omitted variables exist as a type of inductive
bias, a convenient assumption for pCTR model.

Unconfoundedness, i.e., a situation where no omitted variables
exist, is a somewhat severe assumption for real-world data. There-
fore, IVs methods that do not require the assumption of uncon-
foundedness can be compelling and valuable.

2.3 Validating Bid Amounts as IVs
There are three conditions that valid IVs satisfy. The first is the
relevance of the IVs to a treatment variable. The second is an exclu-
sion restriction, where the IVs does not directly affect the outcome
but rather affects the outcome through the treatment variable. The
third is the independence of the IVs with respect to the treatment
and the outcome. Notating IVs vector in ad 𝑗𝑖 as 𝑍 𝑗𝑖 and combining
these conditions, we can write them as follows:

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 : 𝐷 𝑗𝑖 ̸⊥ 𝑍 𝑗𝑖 ,

𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 : {𝜖 𝑗𝑖 , 𝐷 𝑗𝑖 } ⊥ 𝑍 𝑗𝑖 ,

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 : 𝜖 𝑗𝑖 | 𝑋 𝑗𝑖 ⊥ 𝑍 𝑗𝑖 ,

We argue that bid amounts is valid as IVs in ad auctions. The reason
bid amounts function as IVs is summarized in Figure 2 under our
proposed IVs formulation.

With regard to the relevance between bid amounts and impres-
sions, the relevance is explicitly acknowledged by the fact that the
main item in the auction score is the bid amount. Concerning the
exclusion restriction, the bid amount only influences impressions
through the auction score. Therefore, the bid amounts does not
influence the user’s click behavior. Conditional on the variables
used by advertisers and platforms to set bid amounts, bid amounts
are valid instruments.

2.4 Reasons Other Variables are Not Valid IVs
Here, we introduce why other variables, such as bid times used for
targeting, do not meet the conditions of an instrumental variable
in ad auctions.

Relevance : Take targeting variables as an example. From the
perspective of relevance, advertisers determine bid amounts based
on targeting users, which should relate to the probability of assign-
ment. Bid amounts influence the auction score directly, ensuring
more vital relevance than targeting variables, while targeting vari-
ables have an "indirect" relevance to the auction score.

Conditional Independence : The more crucial condition, how-
ever, is that targeting variables do not satisfy the independence from
the unobserved factors affecting the user’s probability of clicking.
For instance, consider bid times as one of the targeting variables.
The time when a user requests an advertisement, that is, the user’s
visitation process, and the probability of clicking the ad can be
related. Users visiting at 10 AM may have a higher or lower proba-
bility of clicking an ad, and even if conditioned on other targeting
variables, the presence of unobserved factors makes it impossible to
guarantee the independence of bid times from the click probability.
On the other hand, the probability that a user will click is consid-
ered independent of the bid amount, conditioned on the targeting
variables, since the user cannot know how much was paid for the
specific advertising at the time of the click.

Exclusion Restriction : From the perspective of the exclusion
restriction, targeting variables affect the probability of a user’s click,
and do not ensure that their influence on the click probability is
exerted solely through the assignment of impressions.

3 CLICK PREDICTIONWITH FIRST-STAGE
IVS HETEROGENEITY

In the methodology section, we propose several variants of the IVs
method to examine the following questions:

• Q.1 Do prediction methods using simple neural networks
with IVs perform in the online ad auction setting? and

• Q.2 Is IVs heterogeneity strongly present in online ad auction
settings and is explicitly addressing it effective in prediction?,

• Q.3 Heterogeneity in treatment effects is widely known,
but by how much improvement relative to accounting for
heterogeneity in IVs?

To introduce models that respond to those questions, the method-
ology section is organized as follows. For Q.1, We first introduce
the basic structure of the nonparametric IVs method and highlight
its heterogeneous relevance to the probability of winning impres-
sions in ad auctions. Next, Q.2, we present a method based on an
attention network that explicitly considers interactions between
IVs and their other features. Finally, Q.3, we explicitly incorporate
heterogeneity in click probabilities by employing an interaction
structure similar to the heterogeneity of instrumental variables.
Figure 3 summarizes our proposed final IVs method.

For simplicity in subscripting the training data, 𝑙 corresponds to
the record number in this section.

3.1 First-stage IVs Heterogeneity in Ad Auctions
In principle, we can estimate a user’s click response 𝑦𝑙 using IVs in
a two-stage approach. Following nonparametric IVs notation by [7],
the incorporation of heterogeneity in the first stage can be written
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Figure 3: IV-IMP Approach Leveraging First- and Second-
stage Heterogeneity with Multi-task Learning Structure

as follows:

𝑝 (𝑦𝑙 = 1) = 𝜙∗ (𝑋𝑙 , 𝑝 (𝑍𝑙 , 𝑋𝑙 ), 𝜖𝑙 ),
𝑝 (𝑍𝑙 , 𝑋𝑙 ) = 𝑝 (𝐷𝑙 = 1|𝑋𝑙 , 𝑍𝑙 ),

where 𝑝 (𝑍𝑙 , 𝑋𝑙 ) is an instrument summarized by the interaction of
multiple IVs, and we assume that 𝐷𝑙 depends only on 𝑋𝑙 through
𝑝 (𝑍𝑙 , 𝑋𝑙 ) and call it first stage. 𝜙∗ is a function that returns a pre-
dictive probability of the event 𝑦𝑙 = 1, which is called second stage.
In the ad auctions, 𝑝 (𝑍𝑙 , 𝑋𝑙 ) is the predicted impression probability,
henceforth 𝑝𝐼𝑀𝑃 , which is a multi-task learning frame and can be
trained in one step together with 𝑝𝐶𝑇𝑅. Using neural networks, a
layer structure can be used that follows the simplified manner of
IVs, which we henceforth refer to as the IV-BS approach.

Although there can be several approaches incorporating interac-
tions between features and IVs, we use an attention network. This
is because it is suitable merely for validating the idea of bid amount
heterogeneity.

3.2 Leveraging First-Stage IVs by Interactions
Given a dataset, let the input feature matrix be represented as
𝐾 after passing through an input layer where all units are fully
connected, including units from 𝑝𝐼𝑀𝑃 and features. Let 𝐵 denote
the batch size and 𝐿 represent the number of units in the input
layer, leading to 𝐾 having dimensions of 𝐵 × 𝐿. The instrumental
variable, represented as matrix 𝑍 , has dimensions 𝐵 × 1. To align
with the shape of 𝐾 , matrix 𝑄 iv is formed by performing a tiling
operation on 𝑍 . Specifically, each row of 𝑍 is replicated on the basis
of the number of columns in 𝐾 . Furthermore, the weight matrix for
IVs interaction is denoted as𝑊 iv and has dimensions 𝐿 × 𝐿. Using
these matrices, the attention score 𝛼iv is calculated as:

𝛼 iv = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 iv (𝑄 iv ⊙ 𝐾) + 𝑏iv).

Here, we use the swish function as an activation function in the
weight matrix𝑊 iv so as to represent the non-linear strength in the
heterogeneity of bid amounts. We feed element-wise products as
interactions into the fully connected layer with the softmax function
as the activation function to generate the attention score 𝛼𝑖𝑣 . Then,
we obtain the representation g by the element-wise product of the
input layer 𝐾 and the generated attention scores 𝛼 iv.

𝑔iv = 𝛼 iv ⊙ 𝐾

We combine the representation g obtained by the attention layer
and the features input in a fully connected neural network to form
the hidden layer.

3.3 Second-stage Heterogeneity
In the second stage, namely in 𝑝𝐶𝑇𝑅 side, it is evident that het-
erogeneity exists when conditioning on user and advertisement
features regarding the effect of impressions. Similarly to how we
took the dot product of bid amounts and feature units in the input
layer in the first stage, we symmetrically use the same in the sec-
ond stage. The input layer consists of fully connected units from
𝑝𝐼𝑀𝑃 and features. The structure of the entire network including
𝑝𝐼𝑀𝑃 and 𝑝𝐶𝑇𝑅 is drawn in Figure 3. The attention score and
representation g can be written as follows:

𝛼 imp = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 imp (𝑄 imp ⊙ 𝐾) + 𝑏imp),

𝑔imp = 𝛼 imp ⊙ 𝐾,

where 𝑄 imp is formed by performing a tiling operation on 𝑝𝐼𝑀𝑃
to align with the shape of 𝐾 . Specifically, each row of 𝑝𝐼𝑀𝑃 is
replicated on the basis of the number of columns in 𝐾 .𝑊 imp is a
weight matrix of 𝐿 × 𝐿 for 𝑝𝐼𝑀𝑃 interaction.

3.4 Loss Function for Multi-task Learning
In the multi-task learning framework for pIMP and pCTR, we adjust
the loss function for pCTR by applying sample weights through an
indicator function, 1{𝐷𝑙=1} :

𝐿𝑜𝑠𝑠𝑝𝐶𝑇𝑅 = 𝐿𝑜𝑠𝑠𝑝𝐶𝑇𝑅 × 1{𝐷𝑙=1}

This function ensures that the 𝐿𝑜𝑠𝑠𝑝𝐶𝑇𝑅 is only computed for data
points with impressions, when 𝐷𝑙 = 1, filtering out instances with-
out impressions from affecting the pCTR loss calculation. This
approach allows us to concentrate on the performance of the model
to predict CTR.

4 EXPERIMENTS
The experimental section is divided into two parts: simulation and
evaluation in scenarios approximating the cold-start problem with
real data sets. The code for replication is available at the following
link: https://github.com/ryohei-emori/NPIV-pCTR. Please note that
the repository excludes sections related to private data.

The notation is consistent with that used in Section 3.

4.1 Simulated Datasets
The procedures for simulating the auction data are summa-

rized in Algorithm 1, aligning with procedure and notation in
section 3.1. The experiment is replicated 20 times. The subscripts 𝑘
and 𝑙 correspond to the number of records in step 1 and 4, re-
spectively. 𝜃 (𝑋𝑘 ) is learned by logistic regression. We use the
Beta distribution for generating bid amounts, which satisfies non-
negative constraints. Specifically, we use the reparametrized Beta
distribution by [6] to model the mean of bid amounts. For sim-
plicity, the number of auctioneers 𝑚𝑖 participating in auction 𝑖
is fixed, but in reality, it may vary depending on the attractive-
ness of users, represented by 𝑋 𝑗𝑖 . The link function Logistic(·) is
defined as (1 + exp(−·))−1. The feature vectors 𝑋𝑘 , 𝑋 𝑗𝑖 , and 𝑋𝑙
are 25 × 1 vectors respectively. Each 𝑋𝑠,𝑘 is drawn from a specific

https://github.com/ryohei-emori/NPIV-pCTR
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Algorithm 1 Simulating auction data and validating baselines

1: 1. Initializing paramaters:
2: Set parameters (𝛼, 𝛽,𝛾)
3: 𝑘 := 0
4: while 𝑘 < 5, 000 do
5: Generate 𝑋𝑘 and 𝜂𝑘
6: 𝐷𝑘 ∼ Bernoulli(𝑝𝐷𝑘

), where 𝑝𝐷𝑘
= Logistic(𝑋 ′

𝑘
𝛼 + 𝜂𝑘 )

7: if 𝐷𝑘 = 1 then
8: 𝑦𝑘 ∼ Bernoulli(𝑝𝑦𝑘 ), where 𝑝𝑦𝑘 = Logistic(𝑋 ′

𝑘
𝛽 + 𝜂𝑘 )

9: 𝑘 := 𝑘 + 1
10: end if
11: end while
12: Train pCTR: 𝑝 (𝑦𝑘 = 1|𝐷𝑘 = 1) := 𝜃 (𝑋𝑘 )
13: 2. Generating historical auction data:
14: for each auction 𝑖 in 5, 000 do
15: 𝑚𝑖 = 20
16: Generate 𝑋 𝑗𝑖 and 𝜂 𝑗 𝑖
17: 𝐵𝑖𝑑 𝑗𝑖 ∼ Beta(𝜇, 2) by [6], where 𝜇 := Logistic(𝑋 ′

𝑗𝑖
𝛾)

18: 𝑝𝐶𝑇𝑅 𝑗𝑖 = 𝜃 (𝑋 𝑗𝑖 )
19: 𝑗∗

𝑖
:= argmax𝑗𝑖 ∈{1,· · · ,𝑚𝑖 } Auction Score𝑗𝑖 ,
where Auction Score𝑗𝑖 := 𝐵𝑖𝑑 𝑗𝑖 × 𝑝𝐶𝑇𝑅 𝑗𝑖

20: 𝑦 𝑗𝑖 ∼ Bernoulli(𝑝 𝑗𝑖 ) & 𝐷 𝑗𝑖 = 1 if 𝑗𝑖 = 𝑗∗
𝑖

where 𝑝 𝑗𝑖 = Logistic(𝑋 ′
𝑗𝑖
𝛽 + 𝜂 𝑗𝑖 )

21: 𝑦 𝑗𝑖 = 0 & 𝐷 𝑗𝑖 = 0, otherwise
22: end for
23: 3. Learning 𝑝𝐶𝑇𝑅 with historical data:

{(𝑦 𝑗𝑖 , 𝑋 𝑗𝑖 , 𝐵𝑖𝑑 𝑗𝑖 , 𝐷 𝑗𝑖 ), 𝑗𝑖 = 1, · · · ,𝑚𝑖 , 𝑖 = 1, · · · , 5, 000}
24: 4. Validating 𝑝𝐶𝑇𝑅 with independently displayed data:

{(𝑦𝑙 , 𝑋𝑙 , 𝐷𝑙 = 1), 𝑙 ∈ {1, · · · , 50, 000}},
where 𝑦𝑙 ∼ Bernoulli(𝑝𝑙 ), 𝑝𝑙 = Logistic(𝑋 ′

𝑙
𝛽 + 𝜂𝑙 ),

generated 𝑋𝑙 and 𝜂𝑙 .

distribution: Uniform[−5, 5] for 𝑠 ∈ {1, · · · , 10}, Bernoulli(0.5) for
𝑠 ∈ {11, · · · , 20}, and Uniform[−2, 2] for 𝑠 ∈ {21, · · · , 25}. These
vectors are generated similarly. The vectors 𝜂𝑘 , 𝜂 𝑗 , and 𝜂𝑙 are gen-
erated from a Uniform[−5, 5] distribution. The parameters 𝛼 , 𝛽 ,
and 𝛾 are coefficient vectors with 25 × 1 elements each, indepen-
dently generated from a normal distribution with a mean of 0.1 and
variance of 1.

We assume that rare ads and users have more prominent un-
observed confounding factors, and thus evaluate predictive CTR
by dividing the degree of magnitude of the omitted variable val-
ues. Thus, the test data is separated by the distance of 𝜂𝑙 from the
mean. Out of a total number of 50, 000 records, we move the outside
quantiles of the distribution of 𝜂𝑙 by 10% on each side.

4.2 Real Datasets
The actual dataset consists of user responses to advertisements
displayed on websites such as Yahoo! JAPAN operated by LY corpo-
ration and auction history records including bidding. The datasets
are divided into a training dataset, in which ad impressions and
clicks are observed through ad auctions, and a test dataset, in which
ad impressions are randomly made to visiting users.

4.2.1 Training data. The training data covers a sample of 50, 000
records randomly drawn from the population for a past seven-
day period. The training data were generated from ad auctions
system, which produced data not satisfying the condition of con-
ditional independence between the treatment 𝐷 𝑗𝑖 and unobserved
confounders 𝜖 𝑗𝑖 .

4.2.2 Test data. In the test data, the prediction baselines using the
day after the 7 days of training data is evaluated. The test dataset
consists of all independently displayed records conditional on ads’
targeting variables.

To evaluate the model’s performance in cold-start scenarios, the
test data was divided based on previous ad impressions. Specifi-
cally, the data was split into 20 subsets at every 5% quantile, with
each subset containing data points below the respective quantile.
To ensure sufficient sample size, the test data included 2,000,000
records. Predicting clicks with more past impressions is generally
easier, even with a simple baseline.

4.3 Evaluation Score
We used log loss, known as a standard evaluation metric for pCTR,
and the area under the curve (AUC) scores. AUC is a proper metric
for evaluating rankings in assessing the ability to predict the correct
position in auction rankings. For the simulation data, we employes
the actual scores and relative scores to compare improvements.
For our real dataset, we present relative evaluation scores due to
confidentiality. The relative scores are defined as follows:

Relative LogLoss =
Naive LogLoss − Compared LogLoss

Naive LogLoss
× 100,

Relative AUC = (Compared AUC − 0.5
Naive AUC − 0.5

− 1) × 100.

4.4 Ablation studies
To evaluate our proposed methods with instrumental variables, we
took a naive benchmark and comparative baselines.

(1) Naive: TheNaive has three hidden layers between the input
layer of features and their passage to the sigmoid function,
building a pCTR model. Each of these hidden layers consists
of 256 units. The first layer uses the swish activation function,
while the second and third layers use the ReLU activation
function.

(2) IV-BS: The baseline is described in section 3.1. Its pCTR
model has the same network structure as Naive, including
𝑝𝐼𝑀𝑃 in the input layer.

(3) IV-FS: The baseline is described in section 3.2. In 𝑝𝐶𝑇𝑅 side,
it has the same network structure as IV-BS.

(4) IV-SSFS: The baseline in 𝑝𝐶𝑇𝑅 side is described in section
3.3, while its network has the same structure as IV-FS in
𝑝𝐼𝑀𝑃 side.

(5) UBIPS : It consists of 𝑝𝐼𝑀𝑃 times 𝑝𝐶𝑇𝑅 for unbiased inverse
propensity weighting estimator [12]. Its network structure is
consistent with IV-BS for 𝑝𝐼𝑀𝑃 and 𝑝𝐶𝑇𝑅 excluding 𝑝𝐼𝑀𝑃
in the input of 𝑝𝐶𝑇𝑅. It also uses a multitasking framework.

The IV-FS and IV-SSFS are not tested in our simulated dataset
for two reasons: one is the IV-BS is sufficient to test whether bid
amounts are efficient and valid IVs in ad auctions. Another is those
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approaches are not suitable to the simplicity, such as the linear inter-
actions, in the heterogeneity of IVs and the user’s click probability
in our simulated dataset.

In this experiments, the loss function is unified across compara-
tive beselines. 𝑝𝐶𝑇𝑅 and 𝑝𝐼𝑀𝑃 models both use binary cross en-
tropy as their loss function. We trained the comparison models
until convergence, where no further improvement in the loss func-
tion in 𝑝𝐶𝑇𝑅 was observed. For all comparative approaches, the
optimization method was Adamax, and the learning rate was fixed
at 0.001.

4.5 Comparing Each Baselines
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Figure 4: Simulation: Performance scores at each outside
quantile of 𝜂𝑙 . Box plots show actual scores. Line plots show
relative scores, with the bold line as the mean and shaded
area showing replication variation.
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Figure 5: Real data: Performance scores at each quantile of
previous ad impressions.

4.5.1 In Simulated datasets. Figure 4 shows that IV-BS im-
proves AUC and LogLoss performance even with omitted variables.
IV-BS remains stable and robust, especially on the left side where
the test data’s 𝜂𝑙 value is high. Notably, omitted variable bias can-
not be ignored even in the Weighted GSP impression assignment
algorithm, and in this regard, IV-BS demonstrates superior perfor-
mance.

4.5.2 In Real dataset. An evaluation of our proposed methods on
the real dataset is shown in Figure 5. It is expected that Naive per-
forms relatively well since the training data includes many ads with
numerous impressions. However, our proposed methods, IV-BS,
IV-FS, and IV-SSFS, show significant improvement in relative AUC,
particularly for ads with few previous impressions. The improve-
ment of UBIPS over Naive, unlike in the simulation experiment,
is likely attributable to the confounder being associated with the
variable observed in the actual data.

Improvement for ads with few impressions matches that for
ads with many, likely due to the infrequent inclusion of rare ads
in training data, causing popularity bias. Notably, the increasing
improvement of IVs methods for the 0 − 20 quantile of previous
impressions demonstrates their robustness in predicting rare ads.

5 CONCLUSION
This paper argues that bid amount is a valid instrumental variable
under the assumption of conditional independence, and tested its
validity by applying it to predictive CTR. Our experiment on a
real dataset showed that explicitly accounting for heterogeneity in
the strength of IVs allows for efficient and robust predictions. For
greater extensibility, incorporating complex interactions between
IVs and other features with more developed approachs such asgraph
neural networks is recommended. Additionally, addressing other
looping bias and validating prediction methods in repeated auctions
would be valuable.
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