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ABSTRACT
Today’s top advertisers typically manage hundreds of campaigns
simultaneously and consistently launch new ones throughout the
year. A crucial challenge for marketing managers is determining
the optimal allocation of limited budgets across various ad lines in
each campaign to maximize cumulative returns, especially given
the huge uncertainty in return outcomes. In this paper, we pro-
pose to formulate budget allocation as a multi-task combinatorial
bandit problem and introduce a novel online budget allocation
system. The proposed system: i) integrates a Bayesian hierarchi-
cal model to intelligently utilize the metadata of campaigns and
ad lines and budget size, ensuring efficient information sharing;
ii) provides the flexibility to incorporate diverse modeling tech-
niques such as Linear Regression, Gaussian Processes, and Neural
Networks, catering to diverse environmental complexities; and iii)
employs the Thompson sampling (TS) technique to strike a balance
between exploration and exploitation. Through offline evaluation
and online experiments, our system demonstrates robustness and
adaptability, effectively maximizing the overall cumulative returns.
A Python implementation of the proposed procedure is available at
https://anonymous.4open.science/r/MCMAB.
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1 INTRODUCTION
Budget allocation has been given wide attention in the advertis-
ing market [1, 9]. Advertisers and agencies that use Demand Side
Platforms (DSP), like Amazon DSP, routinely manage hundreds
of simultaneous campaigns, each comprising various ad lines tar-
geting specific audiences and set with diverse delivery settings.
Daily, marketing managers allocate budgets across ad lines for each
campaign within a daily budget, aiming to boost traffic to retail
websites or maximize product sales. A key challenge is the lack
of understanding of the relationship between ads spending and
performance outcomes, which, once obtained, reduces the task to
an optimization problem solvable by various methods [2, 7].

Today’s ADSP implements automated online performance opti-
mizations that respond to signals on each campaign’s own spend
and conversion data. Such an approach often encounters two sig-
nificant challenges: First, advertisers frequently launch campaigns
sequentially or run multiple campaigns simultaneously. Without
a design in the ADSP that effectively coordinates learning from
past and concurrent campaigns, the learning process is inefficient.
Ad lines typically begin with an equal budget distribution at the
start of a campaign. Although automated tools can make real-time
budget adjustments during campaigns, determining the optimal
budget allocation mix can take up to three weeks. This delay would
result in a considerable number of ineffective ad deliveries, a gen-
eral issue particularly severe for short-lived campaigns and large
advertisers or agencies participating in numerous campaigns each
year. Second, measurement uncertainty exists, primarily due to the
lack of real-life counterfactual observations, necessitating the use of
estimations. This challenge is exacerbated by the dynamic nature of
advertising and business environments, where factors like season-
ality, competitive bidding, privacy regulations, DSP functionality,
and fluctuating customer behaviors make it even more complex to
accurately estimate these values. Relying solely on historical data
can lead to suboptimal solutions in sequential decision-making
scenarios. Thus, the following question is addressed in this paper:
How can we wisely utilize i) learnings from past campaigns
and ii) insights from other ongoing concurrent campaigns to
accelerate the learning process for optimal budget allocation?

To address the inherent uncertainty in digital advertising, Ban-
dits algorithms are known for effectively balancing exploration
and exploitation and have recently been applied to budget alloca-
tion, formalizing it as a combinatorial multi-armed bandit (CMAB)
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Figure 1: Scatter plots of the log of average number of clicks received
and the log of budget allocated for various ad line groupswith distinct
advertisers’ industries, channels, supply sources, and audiences.

problem [10, 11, 20]. However, none of them investigated how to
share information across multiple ad lines and campaigns. Figure
1 depicts the average clicks received for different ad lines from
various campaigns, with varying levels of budget assigned, under-
scoring the significant influence of ad/campaign characteristics
on budget-performance relationships. Additionally, according to
Figure 1, it is important to note that the available features do not
fully determine the expected performance of an ad line with an
assigned specific budget. In other words, even when conditioned on
informative features, the expected performance for a given budget
level still exhibits a degree of variability (referred to as inter-arm
heterogeneity). To strategically boost information sharing across
tasks, we model budget allocation in ADSP as a multi-task CMAB
problem where each ad campaign represents a single CMAB task,
and introduce a feature-based Bandit algorithm augmented by a
Bayesian hierarchical model.

Contributions. Our main contributions are multi-fold.
First, our study is the first, to our knowledge, to investigate

budget allocation for online advertising from the perspective of
large advertisers and agencies managing multiple campaigns, with
a meta objective of optimizing performance over the campaign dis-
tribution. This contrasts with existing studies that primarily focus
on optimizing a single campaign from an advertiser’s viewpoint
[4, 10, 11].

Second, to capture the budget-performance relationship, we
propose a general Bayesian hierarchical model that supports both
parametric and non-parametric modeling. Driven by similar moti-
vations, Han and Arndt [4] introduced a contextual bandit-based
system using augmented data generated from a global model to
share information across ad lines. However, not accounting for
the uncertainty of the fitted global model, its effectiveness relies
heavily on the global model’s performance and can lead to subop-
timal decisions, especially in data-limited scenarios. Furthermore,
with the power law assumption, they assume a linear relationship
between the logarithms of the budget and the performance metric,
which often fails in practice, as shown in Figure 1. In contrast, our
method can effectively address more complex nonlinear budget-
performance relationships by integrating with the Gaussian Process
and Neural Network, as two instances.

Third, through the construction of the Bayesian hierarchical
model, which incorporates an arm-specific random effect to capture
the information not being explained by the feature information, we
effectively tackle the inter-arm heterogeneity observed in Figure

1. While none of the aforementioned work addresses this ubiqui-
tous issue, recent advancements in meta bandits [15, 16] likewise
focus on dealing with such heterogeneity. However, they all rely
on parametric linear model assumptions.

Finally, we implemented our proposed framework in an offline
study using real campaign data from ADSP. The results consis-
tently indicate that our framework achieves faster convergence
and higher cumulative reward, thereby leading to a better budget
allocation strategy in the long term. This is also supported by an
online experiment.

2 RELATEDWORK
Budget/resource allocation, extensively explored over the past decades,
has recently been formalized within the framework of CMAB. For-
mulating the allocation problem as CMAB [3, 10, 11, 17, 18, 20],
budgets are discretized into finite proportions, aligning with the
nature of combinatorial bandits in slate recommendation. Notably,
Zuo and Joe-Wong [20] leveraged the CMAB framework by defin-
ing a super arm as an (ad line, budget) tuple for action assignment,
and naturally extended this idea to continuous budget allocation
scenarios with additional Lipschitz continuity assumptions. In the
work by Xu et al. [18], the authors studied resource allocation prob-
lem with concave objective and fairness constraints. Nuara et al.
[10, 11] proposed a joint bid/budget optimization algorithm based
on Bayesian bandits update with Gaussian process. In the work by
Gupta et al. [3], the authors proposed a correlated combinatorial
bandit framework to capture the structural correlations between
reward functions. However, these methods either fail to utilize
contextual information [17, 20] or rely on restrictive modeling as-
sumptions in rewards and resource consumptions [18], limiting
their applicability to more general applications.

To utilize the contextual information expediting the learning
process, Han and Gabor [5] introduced a contextual bandit frame-
work via a global-local model. However, Han and Gabor [5] focuses
on a single budget allocation task and ignores the inter-arm het-
erogeneity. Additionally, their updating procedure lacks effective
exploration of the global model, making the methodology’s perfor-
mance heavily dependent on howwell the global model fits the data.
This poses a potential challenge when dealing with limited sample
sizes or significant noise in the data. In this work, we build upon
the combinatorial bandit framework to do information sharing.
While discretizing budgets in CMAB may introduce a minor bias
in the precision of estimating the optimal arm, this approach elimi-
nates the necessity of imposing smoothness assumptions, which is
typically required when the budget is considered continuous [5].
Additionally, our work is closely related to traditional approaches
that consider budget allocation purely as an optimization problem
without addressing estimation uncertainty Ou et al. [12], and the
body of work on Multi-task/Meta Bandits [15].

3 PRELIMINARIES
3.1 Budget Allocation
Consider a large advertiser hosting a collection of 𝑀 advertising
campaigns running either concurrently or sequentially. In each
campaign 𝑚 ∈ [𝑀] = {1, 2, . . . , 𝑀}, there are 𝐾𝑚 ad lines desig-
nated for daily budget allocation, and the campaign duration is

2
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denoted as 𝑇𝑚 . For a given campaign𝑚, we assume a total daily
budget of 𝐵𝑚 . At each time round 𝑡 , the budget assigned to each ad
line 𝑘 ∈ [𝐾𝑚] is denoted as 𝑎𝑚,𝑘,𝑡 and a constraint exists such that
the sum of the assigned budgets across all ad lines in campaign𝑚
satisfies

∑𝐾𝑚
𝑘=1 𝑎𝑚,𝑘,𝑡 ≤ 𝐵𝑚 . After assigning budget 𝑎𝑚,𝑘,𝑡 for each

ad line 𝑘 in campaign𝑚, we consequently observe a random re-
ward 𝑅𝑚,𝑘,𝑡 (𝑎𝑚,𝑘,𝑡 ). Our goal is to maximize the cumulative reward
function across all ad lines, all campaigns and all rounds:

maximize
𝑎𝑚,𝑘,𝑡

𝑀∑︁
𝑚=1

𝑇𝑚∑︁
𝑡=1

𝐾𝑚∑︁
𝑘=1
E{𝑅𝑚,𝑘,𝑡 (𝑎𝑚,𝑘,𝑡 )},

subject to
𝐾𝑚∑︁
𝑘=1

𝑎𝑚,𝑘,𝑡 ≤ 𝐵𝑚 ∀𝑚, 𝑡 .

(1)

3.2 Combinatorial Multi-Armed Bandits
To connect the optimization problem described above with the
framework of CMAB, we begin by introducing the fundamental
concept of CMAB. A typical CMAB problem consists of 𝐾 arms
associated with a set of random variables 𝑅𝑘,𝑡 . The random variable
𝑅𝑘,𝑡 indicates the random reward of arm 𝑘 ∈ [𝐾] at time round 𝑡 .
The set of all possible subsets of arms is a power set S = 2[𝐾 ] . We
refer to every set of arms 𝑆 ∈ S as a super arm and every arm in 𝑆
as a base arm. At each time round, one super arm 𝑆 ∈ S is played
and the rewards of all base arms in this super arm are observed.

We consider each campaign as a single-task CMAB problem
where each ad line within the campaign corresponds to a base arm.
The first challenge is that, unlike the conventional CMAB problem
where the decision revolves around whether to play the base arm or
not, in our scenario, we must also determine the budget allocation
for each chosen base arm. As the budget amount is continuous, we
confront an infinite number of potential base arms. The second
challenge arises from the presence of daily budget constraints. This
implies that, at each round, only a subset of super arms is viable for
play, restricted by the limitations imposed by the available daily bud-
get. Even upon overcoming these challenges, conventional CMAB
are designed to accommodate only a single campaign. However,
advertisers often initiate new campaigns or run multiple campaigns
concurrently. To mitigate the cold start issue associated with new
campaigns and enhance data utilization, the proposed CMAB must
facilitate information sharing across different campaigns.

4 METHODOLOGY
4.1 Problem Formulation
Without loss of generality, we define the continuous action space
as A = [0, 1], where 𝑎𝑚,𝑘,𝑡 ∈ A represents the proportion of the
total budget allocated to ad line 𝑘 in campaign 𝑚 at time round
𝑡 . The corresponding budget can be expressed as 𝐵𝑚 × 𝑎𝑚,𝑘,𝑡 . We
further discretize the action space by partitioning the continuous
budget into different proportions: A𝑑 = {0, 1

𝑁
, 2
𝑁
, · · · , 𝑁−1

𝑁
, 1},

with 𝑁 denoting a user-specified integer constant. The rationale
behind the discretization is twofold. First, in practical scenarios,
campaign budgets are commonly assigned in rounded percentages,
such as 10% or 25%, rather than extremely precise amounts. Second,
discretization eliminates the need for smoothness assumptions typi-
cally required for continuous budget optimization. Accordingly,

Figure 2: Graphical representation of model (3). Red nodes are the
selected base arm at round 𝑡 .

we consider maintaining a set of base arms in campaign 𝑚 as
{(𝑘, 𝑎) | 𝑘 ∈ [𝐾𝑚], 𝑎 ∈ A𝑑 }. Each base arm contains metadata
𝑥𝑚,𝑘 ,which comprises specific information on campaign and ad
line configurations. At each time round 𝑡 , we can only play one
arm (𝑘, 𝑎) for each ad line 𝑘 in campaign𝑚. This implies the alloca-
tion of a budget proportion 𝑎𝑚,𝑘,𝑡 to ad line 𝑘 in campaign𝑚. Let
𝜃𝑚,𝑘,𝑎 ≡ E{𝑅𝑚,𝑘 (𝑎)}. We can rewrite our goal as:

maximize
𝑎𝑚,𝑘,𝑡

𝑀∑︁
𝑚=1

𝑇𝑚∑︁
𝑡=1

𝐾𝑚∑︁
𝑘=1

𝜃𝑚,𝑘,𝑎𝑚,𝑘,𝑡
, (2)

subject to
𝐾𝑚∑︁
𝑘=1

𝑎𝑚,𝑘,𝑡 ≤ 1,
𝑁∑︁
𝑛=0

𝐼

(
𝑎𝑚,𝑘,𝑡 =

𝑛

𝑁

)
= 1, ∀𝑚, 𝑡 .

Thus, let 𝒂𝑚,𝑡 = (𝑎𝑚,1,𝑡 , · · · , 𝑎𝑚,𝐾𝑚,𝑡 ), the full allocation space for
each campaign𝑚 at each decision point is S𝑚 = {𝒂𝑚,· | 𝑎𝑚,𝑘,· ∈
A𝑑 ,

∑𝐾𝑚
𝑘=1 𝑎𝑚,𝑘,· ≤ 1,

∑𝑁
𝑛=0 𝐼

(
𝑎𝑚,𝑘,· =

𝑛
𝑁

)
= 1,∀𝑘}.

4.2 Multi-task Bayesian Hierarchical CMAB
Framework

To tackle the optimization problem (2), a key step is the estimation
of 𝜃𝑚,𝑘,𝑎 , which we propose to accomplish using the following
Bayesian hierarchical model:
(Prior) Prior information Q related to 𝑔,

(Generalization) 𝜃𝑚,𝑘,𝑎 | x𝑚,𝑘 , 𝑎 = 𝑔(x𝑚,𝑘 , 𝑎) + 𝛿𝑚,𝑘,𝑎,
∀𝑚 ∈ [𝑀], 𝑘 ∈ [𝐾𝑚], 𝑎 ∈ A𝑑 ,

(Observation) 𝑌𝑚,𝑘,𝑎𝑚,𝑘,𝑡 ,𝑡 = 𝜃𝑚,𝑘,𝑎𝑚,𝑘,𝑡
+ 𝜖𝑚,𝑘,𝑡 ,

(Reward) 𝑅𝑚,𝑡 =
∑︁

𝑘∈[𝐾𝑚 ]
𝑌𝑚,𝑘,𝑎𝑚,𝑘,𝑡 ,𝑡 ,

(3)
where 𝜃𝑚,𝑘,𝑎 is the expected reward of allocating a budget of 𝐵𝑚 ∗𝑎
to ad line 𝑘 in campaign 𝑚 and 𝜖𝑚,𝑘,𝑡 ∼ 𝑁 (0, 𝜎2𝜖 ) is the random
noise for some known𝜎𝜖 . At round 𝑡 ,𝑌𝑚,𝑘,𝑎,𝑡 is the observed reward
for ad line 𝑘 and 𝑅𝑚,𝑡 is the total reward aggregating the observed
rewards from all ad lines within campaign𝑚. The essence of (3) lies
in the two-way decomposition of 𝜃𝑚,𝑘,𝑎 , which splits 𝜃𝑚,𝑘,𝑎 into
two components: i) 𝑔(x𝑚,𝑘 , 𝑎), a function capturing the average
impact of available features x𝑚,𝑘 and action 𝑎 on the reward, with
𝑄 as the prior belief about 𝑔’s distribution, and ii) 𝛿𝑚,𝑘,𝑎 , a random
effect that accounts for the inter-arm heterogeneity conditioned
on x𝑚,𝑘 and 𝑎. See Figure 2 for an illustration. Recognizing that
even the most advanced machine learning algorithms cannot per-
fectly represent the relationship between features and reward, the
additional random effect is primarily employed to account for the
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uncertainty in 𝜃𝑚,𝑘,𝑎 that failed to be captured by 𝑔. Intuitively, as
such, we utilize i) the shared information across campaigns and ad
lines via 𝑔 and ii) the observations 𝑌𝑚,𝑘,𝑎𝑚,𝑘,𝑡 ,𝑡 from all correlated
base arms, to infer 𝜃𝑚,𝑘,𝑎 .

Let 𝜹𝑚 =
[
𝛿𝑚,1,0, · · · , 𝛿𝑚,𝐾,𝑁

𝑁

]
, we assume that 𝜹𝑚 ∼ 𝑁 (0, 𝚺)

for some known covariance matrix 𝚺. For 𝑔, either a parametric or
non-parametric model can be used. In this work, we consider three
working models as examples: i) Linear regression (LR), assuming
𝑔(x𝑚,𝑘 , 𝑎) = 𝜙 (x𝑚,𝑘 , 𝑎)𝑇𝜸 , where 𝜙 (x𝑚,𝑘 , 𝑎) is a certain transfor-
mation of features and actions, and 𝜸 is a vector of parameters
with a prior 𝜸 ∼ 𝑁 (𝝁𝜸 , 𝚺𝜸 ). ii) Neural network (NN) regression,
considering 𝑔(x𝑚,𝑘 , 𝑎) as a fully connected NN of depth 𝐿 ≥ 2, the
collection of parameters of which, 𝜸 , has a prior 𝜸 ∼ 𝑁 (𝝁𝜸 , 𝚺𝜸 )
[6]. iii) Gaussian process (GP) regression, assuming that 𝑔(x𝑚,𝑘 , 𝑎)
follows a Gaussian process prior, such that 𝑔 ∼ GP(𝜇𝜸 ,K𝜸 ).

4.3 Learning Strategy
4.3.1 Posterior Distributions. To sequentially update the parameter
estimation in an online setting, a key step is to derive the posterior
distribution of parameters in (3). Let 𝜽𝑚 = {𝜃𝑚,𝑘,𝑎}1≤𝑘≤𝐾𝑚,1≤𝑎≤𝑁
and 𝜽 = {𝜽𝑚}1≤𝑚≤𝑀 as a

∑
𝑚∈[𝑀 ] 𝐾𝑚𝑁 -dimensional vector con-

taining the expected reward for all (𝑚,𝑘, 𝑎) tuples. Since P(𝜽 |
H) ∝ P(𝜽 | H , 𝑔)P(𝑔 | H), we split the posterior derivation into
two parts: 1) P(𝑔 | H), and 2) P(𝜽 | H , 𝑔).
P(𝑔 | H) shares a general structure under LR, GP and NN. Let

𝚿1:𝐻 be a 𝑑×𝐾𝐻 matrix comprising features of the𝐾 selected arms
(one for each ad line) offered from round 1 to round 𝐻 . Similarly,
𝒀1:𝐻 = (𝒀𝑇1 , · · · , 𝒀

𝑇
𝐻
)𝑇 denotes the observed rewards of all base

arms offered up to round𝐻 .P(𝑔 | H) follows a normal distribution,
with mean and covariance as

E(𝑔(·) | H) = 𝜇 (·) + K(·,𝚿1:𝐻 ) (Φ + 𝜎2𝐼 )−1 (𝒀1:𝐻 − 𝜇 (𝚿1:𝐻 ))
Cov(𝑔(·) | H) = K(·, ·) − K(·,𝚿1:𝐻 ) (Φ + 𝜎2𝐼 )−1K(𝚿1:𝐻 , ·),

where Φ = K(𝚿1:𝐻 ,𝚿1:𝐻 ) + Σ1:𝐻 . Here,K(𝚿1:𝐻 ,𝚿1:𝐻 ) is the vari-
ance induced by the prior distribution, and Σ1:𝐻 denotes the vari-
ance induced by the random effect. In LR, 𝜇 (𝑥) = 𝑥𝑇𝜸 takes a
specific linear form, and K(𝑥, 𝑥 ′) = 𝑥𝑇 Σ𝜸𝑥

′. In GP, 𝜇 (𝑥) as the
prior mean can adopt any function form of 𝑥 , andK(𝑥, 𝑥 ′) is a gen-
eral kernel function. It can be a linear kernel K(𝑥, 𝑥 ′) = ⟨𝑥, 𝑥 ′⟩, an
RBF kernelK(𝑥, 𝑥 ′) = exp−|𝑥 − 𝑥 ′ |2/(2𝑙2) with 𝑙 as a hyperparam-
eter representing the standard deviation, or other kernel functions.
In NN, 𝜇 (𝑥) is a fully-connected neural network, and K(𝑥, 𝑥 ′) is
the neural tangent kernel.

Given 𝑔, P(𝜽𝑚 | H , 𝑔) follows a normal distribution with

E(𝜽𝑚 | H , 𝑔) = Cov(𝜽𝑚 | H , 𝑔)
[
𝚺
−1𝑔(𝚿𝑚) + 𝜎−2𝒁1:𝐻,𝑚𝒀1:𝐻

]
,

Cov(𝜽𝑚 | H , 𝑔) =
(
𝚺
−1 + 𝜎−2𝑑𝑖𝑎𝑔(𝐶𝑚,1,1, · · · ,𝐶𝑚,𝐾,𝑁 )

)−1
,

where 𝐶𝑚,𝑘,𝑛 is the number of observations inH that correspond
to base arm (𝑚,𝑘, 𝑛).

4.3.2 TS and Optimization. Using the derived posteriors, we adopt
the classical TS-type algorithm but split the posterior sampling
into two steps for each decision point. Specifically, we first sample
𝑔 ∼ P(𝑔 | H) and then sample 𝜽𝑚 ∼ P(𝜽𝑚 | 𝑔,H). In the first step,
we integrate all collected data to create a feature-based informative
prior for each 𝜃𝑚,𝑘,𝑎 , which then guides the subsequent learning

Algorithm 1:Multi-Task Combinatorial Bandits (MCMAB)
Input :Specification of 𝑔 and the corresponding prior;

known parameters (i.e., 𝜎𝜖 , 𝚺);H = {}
for every decision point j do

Retrieve the campaign index𝑚;
Update the posterior for 𝑔 as P(𝑔|H), according to (3);
Sample a 𝑔 ∼ P(𝑔|H);
Given 𝑔, update the posterior for 𝜽𝑚 as P(𝜽𝑚 |𝑔,H);
Sample an utility vector 𝜽𝑚 ∼ P(𝜽𝑚 |𝑔,H);
Take action 𝒂𝑚,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒂𝑚,·∈S𝑚

∑
𝑘∈[𝐾𝑚 ] 𝜃𝑚,𝑘,𝑎𝑚,𝑘,· ;

Receive reward 𝑅𝑚,𝑡 ;
Update the dataset asH ← H ∪ {(𝑚, 𝒂𝑚,𝑡 , 𝑅𝑚,𝑡 )}

end

of 𝜃𝑚,𝑘,𝑎 . We refer to this as a feature-guided (FG) approach. This
notably differs from that of [4], which employs only the first step.

In practice, updating 𝑔 at every decision time is unnecessary.
Adopting an offline-training-online-deployment paradigm is more
suitable, particularly when collecting observations and making
decisions in batches. Specifically, we would update the posterior of
𝑔 at particular time points using all accumulated information. Then,
a 𝑔 is sampled and utilized as the prior for subsequent learning of
𝜽 until 𝑔 is retrained and sampled.

Given 𝜽𝑚 , the final step involves an optimization problem. Specif-
ically, we need to solve argmax

𝒂𝑚,𝑡 ∈S𝑚

∑
𝑘∈[𝐾𝑚 ] 𝜃𝑚,𝑘,𝑎𝑚,𝑘,𝑡

, which can

be regarded as a Multiple-Choice Knapsack Problem (MCKP) [8].
Specifically, MCKP is a generalization of the ordinary knapsack
problem, where the set of items are originally partitioned into
𝐾 groups. Instead of making binary choices regarding each item,
MCKP only allows (at most) one item in the same group to be
chosen. Similar to the ordinary knapsack problem, one can utilize
dynamic programming to find the optimal solution. We summarize
the entire learning strategy in Algorithm 1.

5 OFFLINE EVALUATION
In order to assess the effectiveness of the proposed approach in
real-world settings, we compare it with the existing methods using
the Amazon Digital Advertisements’ campaign data from the first
quarter of 2023.

Design. To simulate real-world scenarios, we first determined
𝑔, 𝜎𝑚 , and 𝜎𝜖 . The selection of 𝑔 involved comparing the perfor-
mance of linear regression, random forest, and CatBoost [13] in
predicting the logarithm of clicks obtained (i.e., 𝑙𝑜𝑔(𝜃𝑚,𝑘,𝑎)) using
campaigns/ad lines’ metadata (i.e., supply source, channel) and
the logarithm of budget cost. CatBoost emerged as the most accu-
rate, exhibiting the lowest mean squared error. Subsequently, let
𝚺 = 𝜎2𝑚 𝑰 , 𝜎𝑚 and 𝜎𝜖 were determined to be 0.35 and 0.40, respec-
tively, using maximum likelihood estimation based on the fitted
CatBoost model and under the assumption that both the random
effects and noise are normally distributed. It is important to note
that in our application of CatBoost, we do not enforce any para-
metric modeling assumptions regarding the relationship between
the features and the rewards.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Multi-Task Combinatorial Bandits for Budget Allocation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Models Utilize 𝒙 Heterogeneity Linear Assumption
MCMAB (ours) ✓ ✓ ×

FD ✓ × ×
FA-ind × ✓ ×
Han2021 ✓ × ✓

Table 1: MCMAB and baseline approaches.

To mimic the concurrent scenario, where multiple campaigns
run simultaneously, we construct 50 distinct campaigns (𝑀 = 50),
each with five randomly selected ad lines (𝐾 = 5) and a daily budget
limit of $300 (𝐵𝑚 = 300). Budgets were distributed daily across ad
lines within each campaign separately. The stochastic observations
for the total clicks are generated using the base model (3) with
𝑔, 𝜎𝑚, 𝜎𝜖 as parameters. Similarly, to mimic the sequential scenario,
where campaigns come in sequence, each campaign is randomly
constructed with five ad lines (𝐾 = 5) and lasts 50 days (𝑇 = 50)
with a daily budget of $300 (𝐵𝑚 = 300).

Baselines. Our studies compare ten approaches, including the
proposed MCMAB algorithm with LR, NN, and GP as working
models to model the relationship between 𝑙𝑜𝑔(𝜃𝑚,𝑘,𝑎) and features.
We also examine the feature-determined (FD) counterpart of each
version of the MCMAB algorithm, which shares the MCMAB’s
modeling assumptions but with 𝜎𝑚 = 0. LR-based approaches
use feature information 𝒙𝑚,𝑘 , encompassing channels and supply
source of the corresponding ad line, and the budget limit of the cor-
responding campaign. They assume that𝑔(𝒙𝑚,𝑘 , 𝑎) = 𝜙 (𝒙𝑚,𝑘 , 𝑎)𝑇𝜸 ,
with 𝜙 being a deterministic function that transforms the tuple in-
formation (𝒙𝑚,𝑘 , 𝑎) to further include interaction terms between
channels, supply sources, and the logarithm of budget shares. GP-
based approaches assume 𝑔(𝒙𝑚,𝑘 , 𝑎) follows a Gaussian Process,
while NN-based approaches employ a fully connected 3-layer neural
network 𝑔 with a width of 30 for the concurrent setting and a width
of 26 for the sequential setting. Additionally, we explored Hibou,
the current method used in the ADSP system, which posits linear
relationships between ad-line performance and assigned budgets,
allocating budgets solely on estimated gradients without further
exploration or information sharing. The study also includes an
evaluation of Han2021_RF and Han2021_LR, the contextual ban-
dits approaches from Han and Arndt [4], utilizing Random Forest
and Linear Regression as the global model, respectively. The local
model for each ad line is fitted as a Bayesian linear model using an
augmented dataset consisting of 30 predicted returns generated by
the fitted global model and the ad line’s observed history. Lastly, we
considered FA-ind, a baseline approach that independently learns
the distribution of each 𝜃𝑚,𝑘,𝑎 . See Table 1 for a summary.

To ensure a fair comparison, we applied uninformative priors
for all methods. Specifically, for FD-LR and MCMAB-LR, we used
𝜸 ∼ N(0, 20𝑰 ); for FD-GP and MCMAB-GP, we used zero-mean
priors with RBF kernels; for FD-NN andMCMAB-NN, we initialized
the networks with all weights sampled from normal distributions
with zero mean Zhang et al. [19]; for Hibou, we started with an
even allocation; and for Han2021_LR and Han2021_RF, we used
N(0, 20𝑰 ) as the prior for local model parameters[4].

Results. Figure 3 depicts the average reward (i.e., the average
number of clicks) received after implementing the budget alloca-
tion strategies suggested by each approach. Overall, feature-guided

approaches (MCMAB-LR, MCMAB-GP, and MCMAB-NN ) demon-
strated greater average reward, outperforming other methods. Com-
pared to Hibou, MCMAB showed an approximate 18% increase in
the average number of clicks obtained at the conclusion of the
experiment in the concurrent setting, and a 16% increase in the
sequential setting.

Failing to utilize any feature information, FA-ind struggles with
the curse of dimensionality and limited interaction opportunities,
resulting in a significantly slower learning process with the lowest
average reward, for both settings. Under the concurrent setting,
Hibou, which uses only the budget information and learns the
reward distribution for each ad line independently, continues to
show a lower average reward than approaches that utilize addi-
tional ad line metadata information. On the other hand, feature-
determined approaches (FD-LR, FD-GP) and Han2021 initially out-
perform feature-guided approaches (MCMAB-LR, MCMAB-GP) but
ultimately sustain lower average reward due to their restricted
model assumptions. It should be noted that because the current
network structure is naively specified without carefully fine-tuning
its width and depth, FD-NN and MCMAB-NN perform worse than
other feature-determined approaches, indicating that the current
network structure fails to capture the relationship’s complexity
well. We could expect that the NN-based approach will perform
better with further fine-tuning.

Under the sequential setting, Hibou demonstrates superior per-
formance during the initial stages. This is because when campaigns
are introduced sequentially, the metadata information is limited
initially, impeding reasonable estimations for other feature-based
approaches. As the system accumulates data from an increasingly
diverse range of campaigns, the average reward for approaches that
utilize metadata for information sharing shows a marked increase.
In contrast, Hibou’s average reward converges to be constant, re-
flecting its inability to leverage learnings from past campaigns.
Similar to what we observed in the concurrent setting, feature-
determined approaches and Han2021 yield a lower average reward
compared to MCMAB. This underperformance is primarily attrib-
uted to their failure to adequately address the heterogeneity among
base-arms.

Finally,MCMAB-LR performs better thanMCMAB-NN andMCMAB-
GP under the concurrent setting. This is presumably due to the
linear properties of the dataset we used, which reduce the efficacy
of the more complex GP and NN models, potentially leading to
overfitting. In contrast, MCMAB-GP performs better than MCMAB-
LR andMCMAB-NN under the sequential setting, withMCMAB-LR
gradually approaching the performance level of MCMAB-GP as
more campaigns are completed. This is mainly due to the initial
scarcity of metadata, which hinders MCMAB-LR’s ability to estab-
lish a reliable linear model, whereas the Gaussian process, by using
its kernel function, can effectively focus on more relevant features
and ignore features containing less information. It is worth not-
ing that fine-tuning kernels and hyperparameters can improve the
performance of GP-based approaches, while the performance of
NN-based approaches can be enhanced by further adjusting the
neural network structure and learning rate.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ge, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Simulation results on Amazon’s campaign data, averaged
over 100 random seeds. Shaded areas represent the 95% CI.

6 ONLINE EXPERIMENTS
To assess the effectiveness of our method in real-world settings, we
initiated an online experiment by allocating 3% of the budget from
an active ad campaign on ADSP. This campaign targeted 15 distinct
audience groups, each comprising 22 ad lines. For the experiment,
we constructed 30 campaigns, each consisting of a single audience
group with 10 ad lines, summing up to 300 ad lines in total. The 3%
of the budget was isolated by carving out 3% of Amazon demand
by geo from the main campaign and directing them exclusively to
the experiment.

Within the 3% of geos in the experiment, we implemented an
A/B test, dividing the budget equally between two groups: one
subjected to our newly developed MCMAB-based budget allocation
strategy and the other continuing with the traditional Hibou bud-
get optimization as a control group. Based on the previous offline
evaluation, we selected linear regression as the working model for
MCMAB, incorporating features such as the suppliers of the ad lines
and the channels used. An informative prior for the MCMAB-LR
was constructed using data collected from similar campaigns run
by the same advertiser in 2023.

The experiment demonstrated promising potential, achieving a
notable 12.7% reduction in cost-per-click using the proposedmethod
compared to the standard practice after three weeks.

7 CONCLUSION
Motivated by the potential of leveraging information sharing among
campaigns for enhancing the accuracy of return predictions, and
hence optimizing budget allocation strategies, we introduce a so-
phisticated multi-task combinatorial bandit framework building
upon Bayesian hierarchical models. This innovative approach has
demonstrated considerable promise in numerical studies, effec-
tively maximizing cumulative returns through the utilization of
the metadata of campaigns and ad lines, as well as the budget
size. Specifically, an offline study conducted on Amazon’s cam-
paign data reveals an average improvement of 18% in total clicks
obtained under the concurrent setting compared to the currently
deployed Hibou system and an average improvement of 16% under
the sequential setting. A further online experiment also shows an
improvement of 12.7% in cost-per-click reduction.

As a future direction, recognizing the impact of dynamic con-
textual factors such as the week of the month, day of the week,
and holidays on advertising return variability, we are consider-
ing an extension to include contextual bandits. This development
aims to incorporate these temporal factors, thereby improving the

model’s ability to take the seasonality of advertising returns into
account. Furthermore, while we assume independence between dif-
ferent campaign activities, internal competition is ubiquitous due
to limited ad resources[14]. Optimizing each campaign individually
may result in a local optimum, with the possibility of excessive
demand exceeding ad line supply. To achieve a global optimum, it
is worthwhile to consider internal competition across campaigns.
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