
AFA: Auto-tuning Filters for Ads
Joobin Gharibshah

eBay Inc.
San Jose, California, USA
jgharibshah@ebay.com

Mahmuda Rahman
eBay Inc.

San Jose, California, USA
mahrahman@ebay.com

Abraham Bagherjeiran
eBay Inc.

San Jose, California, USA
abagherjeiran@ebay.com

ABSTRACT
Tuning filters to refine Ads eligibility to surface in search results
emerges as a pivotal problem. It often necessitates a nuanced ap-
proach to cater to diverse requirements from the customers. Adjust-
ing these filters must judiciously balance the preferences of both
advertisers and users in the online marketplace. Hence, it requires
a multi-objective optimization which often turns out to be hard due
to the conflicting nature of the objectives from these customers. In
this paper we present AFA: Auto-tuning Filters for Ads - a novel
application of Bayesian Optimization for auto-tuning these filters.
We specifically develop AFA to employ a probabilistic model to
navigate the intricate trade-offs between multiple objectives. It it-
erates over a feasible solution space and quickly converges to an
operating point which ensures showing well performing ads while
increasing their scale. This offers a substantial advancement in the
automation for digital advertising campaigns. Our approach signif-
icantly reduces the reliance on manual adjustments and expensive
A/B testing, as demonstrated by empirical results from a large-scale
e-commerce platform.
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1 INTRODUCTION
Sponsored search is an advertising model used by search engines
to display paid advertisements alongside organic search results.
When a user enters a query, the search engine runs an auction
among advertisers who have bid on keywords relevant to the user’s
search terms. The winners of this auction have their ads displayed
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Figure 1: A visual overview of AFA pipeline to auto tune the quality
filter: (1) Observed data points consist of thresholds and metrics
lift (set of values for each objective function on that given thresh-
old) denoted as < 𝑇, 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖 𝑓 𝑡 (𝑇 ), 𝑆𝑐𝑎𝑙𝑒𝐿𝑖 𝑓 𝑡 (𝑇 ) > respec-
tively, initial data points collected based on random thresholds
from a feasible solution space. (2) Optimizer fits surrogate func-
tion on the observed data points and produce𝑇 ∗ as the next thresh-
old (T*) to be evaluated (3) Evaluator measures the impact of the
new threshold𝑇 ∗ on the objective value and produce another triple
< 𝑇 ∗, 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖 𝑓 𝑡 (𝑇 ∗ ), 𝑆𝑐𝑎𝑙𝑒𝐿𝑖 𝑓 𝑡 (𝑇 ∗ ) > to be appended to the
stored observed data points so that we can explore next point based
on that

in prominent positions on the search results page, typically marked
as "Sponsored" or "Ad" to distinguish them from other content.

While these advertisements (a.k.a. ads) benefit advertisers by
increasing the visibility of their products to potential users, main-
taining user satisfaction is also important for the e-commerce plat-
form to monetize the search from showing ads. Thereby, it is crucial
to ensure that the participating ads are of high quality to comply
with user’s desirability. Generally, ad platform employs a variety of
quality filters controlled by hyperparameters 1. Its core purpose is
to efficiently navigate through extensive datasets, find content that
aligns closely with the user’s search intent and personal preferences
by providing more relevant outcomes.

The paper presents a innovative approach for automatically
tuning quality filters in the search monetization domain using
Bayesian Optimization. The approach aims to optimize the quality
threshold to balance scale improvement and ad performance. An
automated pipeline was developed to minimize human effort, time,
and errors in this process.

1.1 Challenges
E-commerce platforms face the challenge of setting the right quality
threshold for ads while ensuring sufficient ad exposure to increase
scale. This issue arises from the differing needs of two main stake-
holders: advertiser and user

1.1.1 Advertiser’s preferences. Advertisers enlist their items on e-
commerce marketplace to sell and expect greater visibility of their
1https://support.google.com/google-ads/answer/6167130?hl=en accessed on
07/11/2024
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product in exchange for paying more to the platform. As they often
prioritize visibility over the quality of their product, the platform
needs to maintain a quality filter that strikes a balance between
their need for exposure for the product (measured by scale) and its
relevance to the user’s preferences.

1.1.2 User’s preferences. The e-commerce platform is also commit-
ted to meeting the essential needs of user who uses this platform
to find high quality product based on their search queries as input.
It is the platform’s responsibility to provide them with relevant
and high quality search results for their queries. To achieve this,
an appropriate quality filter is required to surface products in the
search results that are most relevant to the user’s query. User’s
preference is calculated as the ratio of the click over number of
impressions they have (to measure filter’s performance).

This dilemma between the preferences of users and advertisers
presents a challenging problem in e-commerce platforms. On one
hand, they need to increase the quality threshold to meet users’ ex-
pectations of obtainingmore relevant items. On the other hand, they
must keep the quality filter to a degree where the platform can ac-
commodate advertisers’ appetite for increased visibility. Therefore
they aim to enhance ad scales without compromising the perfor-
mance.

1.2 Motivation
The dynamic nature of the marketplace, characterized by contin-
uous growth, frequent updates, and new feature roll outs, further
complicates the task by rendering the static thresholds obsolete
in short order. Manual tuning of filters is not only time-intensive
but also lacks efficiency, underscoring the need for an automated,
scalable solution. Main inspirations for this work are:

1.2.1 Need for a Formal Definition. Capturing and quantifying the
intricate correlations between two different objectives (Scale and
Performance), which often exhibit complex interactions, is a hard
task. The absence of a formal function to encompass both the objec-
tives, exacerbates this issue and hinders the systematic exploration
of the trade-offs inherent to the objectives. Consequently, without
a clear mathematical framework to navigate the multi-dimensional
objective space, manual optimization becomes not only cumber-
some but also prone to sub-optimal decision-making, as it relies
on intuition rather than analytical precision. This emphasize the
necessity for a structured approach that can effectively balance
these competing goals and facilitate the discovery of an optimal
solution that results in a desired outcomes.

1.2.2 Opportunity Cost. As a common practice, multiple experi-
ments covering various operating points and parameters via grid or
random search [1] are utilized to find a proper thresholds for filters.
This manual process is expensive and time-consuming which often
needs to be repeated whenever there is a change in the environment.
On an e-commerce platform, the vast number of advertisements
and transactions necessitates that modifications are made with ac-
curacy and speed to stay attuned in the market. As the customer
tastes and industry tendencies shift quickly, it leaves only a brief
time window to detect and react to these developments successfully.
Delayed tuning can lead to outdated search results, diminishing

user experience and potentially leading to a loss in sales, customer
trust and platform’s reputation.

1.3 System Overview
Our proposed system employs a probabilistic model that captures
the complex relationship between the quality threshold and the
multi-objective function, which includes both performance and
scale lift. By utilizing Bayesian optimization, we iteratively update
the quality filter settings, efficiently navigating the search space to
identify the optimal threshold that satisfies the dual objectives as
demonstrated in Figure 1. This approach not only accounts for the
inherent uncertainty in user behavior but also reduces the need for
extensive manual tuning and A/B testing.

To this end, we introduce AFA as an auto filter tuning pipeline
for ads to tune the quality filter. AFA consists of three major steps
that we illustrated in the figure 1 and we introduce them here.

1.3.1 Initializer is a process to collect and store data points ob-
served over the course of running our system. We store a triplet
(𝑇,𝑉𝑂𝑏 𝑗1 (𝑇 ),𝑉𝑂𝑏 𝑗2 (𝑇 )) for each filter threshold 𝑇 that we explore.
This triplet has a threshold along with two corresponding objective
values, i.e., scale lift and performance lift. The pipeline starts with
some initial data points which are collected via running A/B tests
over various thresholds within the exploration range to give the
process a warm start.

1.3.2 Optimizer utilizes a Bayesian optimizer to solve multiple
objectives consisting of scale and performance. This optimizer will
read initial data points i.e (𝑇,𝑉𝑂𝑏 𝑗1 (𝑇 ),𝑉𝑂𝑏 𝑗2 (𝑇 )) and build a surro-
gatemodel based on those data points. Then it utilizes an acquisition
function [7] to suggest a new threshold𝑇 ∗ which is the next optimal
point to be evaluated by Evaluator.

1.3.3 Evaluator is the component which runs an A/B test to evalu-
ate the objective function with respect to the suggested threshold.
Then, we compute a new triple as (𝑇 ∗,𝑉𝑂𝑏 𝑗1 (𝑇 ∗),𝑉𝑂𝑏 𝑗2 (𝑇 ∗)) which
consists of the suggested threshold 𝑇 ∗ by the optimizer and corre-
sponding objectives values evaluated by the evaluator. This newly
explored data point is then feedback to the initilizer.

Thus, the pipeline constantly updates the quality threshold to
respond to new changes, ensuring that search results remain rele-
vant.

1.4 Contributions
This paper presents several key contributions:

• We formalize the process of general filter tuning problem by
leveraging a Bayesian optimization method in AFA, consid-
ering the need of multiple competing stakeholders.

• AFA provides a fast-converging approach that significantly
reduces human effort and time for tuning quality threshold.

• AFA has been successfully deployed within an e-commerce
platform, demonstrating its effectiveness in refining quality
filters for the search engine and attesting to its scalability in
large-scale industry settings.

The structure of the paper is as follows: Section 2 describes
implementation details in the optimization process and evaluation
metrics. Section 3 analyzes the results of AFA. Section 4 reviews
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related literature. Section 5 concludes with a summary and future
research directions.

2 IMPLEMENTATION DETAILS
In the pipeline presented in Figure 1, there are three components
as we explained in section 1.3. In this section, we focus on the
Optimizer and provide more details regarding its implementation
and evaluation.

2.1 Optimization Process
In this section, we describe our objective function and its formula-
tion.

Objective function In AFA, we aim to find a threshold value for
quality filter that satisfies two objectives related to advertisers and
users needs: maintaining performance lift and a positive scale lift
in ads. The lift amounts calculated for this purpose are all relative
differences between the suggested value and the current value in
the system as AFA updates the threshold in each iteration. (more
detail in section 3 and equation 14).

We formulate these objectives as follows:
Increasing scale: AFA looks for quality thresholds which in-

crease the ad scale in search result by:

𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡 ∈Thresholds

𝛿𝑠 (𝑡 ) (1)

where 𝛿𝑠 (𝑡 ) represents ad scale changes.
Maintaining performance: AFA also looks for that quality

thresholds to minimize performance lift via:
𝑡 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥

𝑡 ∈Thresholds
− |𝛿𝑝 (𝑡 ) | (2)

subject to the constraint
���𝛿𝑝 (𝑡 ) ��� < 𝐶 . where 𝛿𝑝 (𝑡 ) represents perfor-

mance changes.
We combine these two objective in one as follows:

𝑡 = argmax
𝑡 ∈Thresholds

(
𝛿𝑠 (𝑡 ) −

���𝛿𝑝 (𝑡 ) ���) (3)

subject to the constraint
���𝛿𝑝 (𝑡 ) ��� < 𝐶 . In this function, we apply

the same weight to both objectives, although these weights may
vary in different scenarios.

To impose the constraint 𝐶 on the objective function we employ
a penalty and reward mechanism. We penalize and reward the
objective function when the explored thresholds fails and succeeds
to maintain the constraint respectively. Thereby, we formulate the
optimization problem as follows:

𝑓 (𝑡) = 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡 ∈Thresholds

(
𝛿𝑠 (𝑡 ) − 𝛿𝑝∗ (𝑡 )

)
(4)

where the modified performance will be defined as:

𝛿𝑝∗ (𝑡 ) =

{
𝑅(𝑡) ∗ 𝛿𝑝 (𝑡 ) −𝐶 ≤ 𝛿𝑝 (𝑡 ) < 𝐶

𝑃 (𝑡) ∗ 𝛿𝑝 (𝑡 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

Here, 𝑃 (𝑡) and 𝑅(𝑡) are the amount of penalty and reward we apply
on the 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐿𝑖 𝑓 𝑡 .

This generic formulation can accommodate additional objectives
and constraints, as well as custom-defined penalty and reward
values, according to business requirements. Although we have

defined the constraint in closed-form, we have not devised a closed-
form definition for the objective components that would allow us to
use the Lagrange multiplier method. However, we discuss related
work and alternative approaches in Section 4.

In our pipeline, at each iteration, the Optimizer solves for the
objective function defined in Equation 4 by using a Bayesian opti-
mization approach, as we describe below.

Bayesian Optimization employs a probabilistic model to rep-
resent the uncertainty about the objective function’s behavior, and
it updates this model iteratively using Bayes’ Theorem as new data
points are observed.

Bayes’ Theorem is formulated as follows:

𝑃 (𝜃 |data) = 𝑃 (data|𝜃 )𝑃 (𝜃 )
𝑃 (data) (6)

where: 𝑃 (𝜃 ) is the prior probability of the hypothesis before
seeing the data. 𝑃 (data|𝜃 ) is the likelihood of the data under the
hypothesis. 𝑃 (data) is the marginal likelihood or evidence, the
probability of the data under all possible hypotheses. 𝑃 (𝜃 |data) is
the posterior probability of the hypothesis after seeing the data. In
our case, 𝜃 is representing the threshold

Based on this Bayes’ Theorem, we build a surrogate model which
will rely on the observed data points (thresholds) and make a predic-
tion for unobserved data points. The surrogate model is as follows:

a) Surrogatemodel is a probabilistic model used to approximate
the unknown objective function 𝑓 (𝑥) that we wish to optimize. The
surrogate model, denoted as 𝑓 (𝑥), is used to predict the output of
𝑓 (𝑥) given new inputs 𝑥 , and to estimate the uncertainty of that
prediction.

The surrogate model we used is a Gaussian Process (GP), which is
defined by a mean function 𝜇 (𝑥) and a covariance function (kernel)
𝑘 (𝑥, 𝑥 ′). The GP surrogate model for any input point 𝑥 is:

𝑓 (𝑥) ∼ GP(𝜇 (𝑥), 𝑘 (𝑥, 𝑥 ′)) (7)
This formulation allows the Bayesian optimization algorithm to

not only predict the function value at unobserved points but also
quantify the prediction uncertainty, which is crucial for balancing
exploration and exploitation during the optimization process. In
our GP, we used a White Noise as a kernel function in Bayesian
optimization[11], This kernel function is defined to represent the
idea that observations have some amount of uncorrelated noise.

The White Noise kernel is defined as:

𝑘 (𝑥, 𝑥 ′) = 𝜎2
𝑛Δ(𝑥, 𝑥 ′) (8)

where 𝜎2
𝑛 is the noise variance, a hyper-parameter that represents

the variance of the noise in the observations. Δ(𝑥, 𝑥 ′) is the Kro-
necker delta function, which equals 1 if ( x = x’ ) (i.e., the points are
identical) and 0 otherwise [11]. The White Noise kernel is just one
possible choice among many kernels for GPs

b) Acquisition function is a function that guides the optimiza-
tion process by determining where to sample next. The acquisi-
tion function balances exploration of the search space (sampling
where the model is uncertain) with exploitation (sampling where
the model predicts high performance).

Two common acquisition functions which we used in AFA are:
1) Expected Improvement (EI): This function measures the

expected amount of improvement over the current best observation
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𝑓 (𝑥+) at a new point 𝑥 .

𝐸𝐼 (𝑥) = E
[
max(𝑓 (𝑥) − 𝑓 (𝑥+), 0)

]
(9)

where 𝑓 (𝑥) is the objective function and 𝑓 (𝑥+) is the best observed
value so far.

2) Probability of Improvement (PI): This function measures
the probability that sampling at a new point 𝑥 will lead to an im-
provement over the current best observation 𝑓 (𝑥+).

𝑃𝐼 (𝑥) = 𝑃 (𝑓 (𝑥) > 𝑓 (𝑥+)) (10)

The selected acquisition function will generate a new threshold,
which will be passed to the evaluator for testing in the next step. To
ensure fast convergence we adopted PI . We explain the evaluation
process in Section 2.2.

2.2 Evaluation Metrics
We need to evaluate the optimizer’s efficiency using the Evaluator
through an A/B test. We execute this phase of the pipeline at the
conclusion of each iteration, which, in our case, spans a period of
six days. We set the recommended threshold by AFA as a treatment
in an A/B test and get the real-time impact on both the scale and
performance since metrics like performance are dependent to user
behaviour and is not possible to be computed offline precisely. The
objectives calculated by AFA are:

Scale is calculated as the ratio of the total number of times ads
are displayed to the number of qualified queries (i.e. buyer searches)
that trigger the ads, expressed by the formula:

𝑆𝑐𝑎𝑙𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑 𝑄𝑢𝑒𝑟𝑖𝑒𝑠
. (11)

Performance is measured as the proportion of clicks an ad-
vertisement receives relative to the number of times it is shown
(impressions), represented by the formula:

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑙𝑖𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠
. (12)

We introduce quality and revenue here as additional output
metrics in order to track business impacts.

Revenue is the income earned from displaying ads on a platform.
It can be calculated as:

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = Buyers’ action (i.e clicks) × Revenue per action (13)

Quality is the indicator of the relevance of the ads with respect
to query.

The amount of lift in an A/B test is calculated by comparing
the evaluation metric (e.g., scale) between the treatment group (T),
𝑀𝑒𝑡𝑟𝑖𝑐𝑇 , and the control group (C),𝑀𝑒𝑡𝑟𝑖𝑐𝐶 , using the formula

𝐿𝑖 𝑓 𝑡 =
(𝑀𝑒𝑡𝑟𝑖𝑐𝑇 −𝑀𝑒𝑡𝑟𝑖𝑐𝐶 )

𝑀𝑒𝑡𝑟𝑖𝑐𝐶
× 100% (14)

The amount of lifts will be used by the Optimizer and also stored
in the table introduced at Section 2 for the ongoing exploration.

3 EXPERIMENT RESULTS
Analyzing the outcomes of filter tuning to meet multiple objectives
simultaneously, is not a trivial task. It requires a deep and precise
understanding of the interplay between different objectives. How-
ever, in our algorithm, we have formalized this relationship in a

robust manner, allowing measurable and accurate improvements.
In this section, we discuss our experimental results.

3.1 Execution Efficiency
Our experiments demonstrate that AFA could achieve the defined
objectives within three iterations through our tuning pipeline. Fig-
ure 2 illustrates how the model evolved over multiple iterations.

One of the standout results of using AFA for automatic filter
tuning is its marked efficiency in both time and human effort. In a
comparative analysis between manual tuning and AFA-assisted tun-
ing, we observed a significant reduction in the number of iterations
required to optimize the quality filter. Manual efforts necessitated
12 iterations to achieve satisfactory results, whereas AFA achieves
comparable improvements in the ad scale metric and maintained
performance within just 3 iterations.

Moreover, the total number of data points needed for AFA was
halved, with only 6 data points (including 3 initial data points)
compared to the 12 required for manual tuning. This reduction in
data points translates directly into savings extensive AB testing
spanning for multiple weeks as well as post test analysis efforts.
AFA autonomously computes the next threshold to test, minimizing
the need for manual evaluation.

Time efficiency was also significantly improved. Each data point
in the AFA corresponded to outcome of one week of experimen-
tation using our A/B testing platform, leading to an optimization
timeline of just 4 weeks. This consisted of a week of initial data
collection followed by 3 weeks of iterations. Conversely, the manual
approach spanned over 12 weeks, with each iteration taking one
week - yet resulting in a sub-optimal solution for the problem.

In summary, the deployment of AFA for quality filter tuning
within our experimental framework yielded a 4X increase in effi-
ciency in terms of both time and human effort. This demonstrates
AFA’s potential to accelerate the tuning process, ultimately reduc-
ing the laborious and time-intensive nature of manual filter tuning.

3.2 Business Targets
In this section, we present the amount of improvement achieved by
employing AFA in our real world production platform, targeting a
large online user population over a two-week experiment period.

We compared two thresholds: the recommended threshold from
AFA, which converged after three iterations via an automated
pipeline, and the best threshold suggested by manual tuning, which
required human adjustment over twelve iterations. As indicated in
Table 1, both methods improved the scale, but AFA showed a higher
impact on businessmetrics. AFA not only improves the quality score
80% but also we achieved a 0.72% higher performance compared to
manual tuning, resulting in a mere 0.18% performance loss when
using AFA, as opposed to a 0.66% performance loss with the manual
approach. Considering that performance was our constraint during
the optimization phase, a smaller loss signifies a better operating
point. Moreover, we observed a 44% improvement in ad revenue
with AFA; manual tuning resulted in a 0.22% loss in revenue, while
AFA managed a 0.01% gain. We also observed a startling gain of
80% quality as well. In summary, our approach enabled the dis-
play of more ads without sacrificing performance. Furthermore, it
improved quality and revenue which are key business metrics.
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(a) Surrogate model and acquisition function after feeding
initial data points

(b) Surrogate model and acquisition function after second
iteration

(c) Surrogate model and acquisition function after third
iteration

Figure 2: Changes in the surrogate model and acquisition function over three iterations. The dashed green line represents the surrogate model
fitted to the red dot observations. The green shade indicates the uncertainty for each threshold based on the surrogate function. The blue
line represents the acquisition function, and the blue dot marks the next point suggested for testing, based on the maximum value of the
acquisition function that optimizes the defined objective.

Table 1: Comparing business metrics lift results between manual
filter tuning vs AFA tuning approa ch

Method Scale Performance Quality Revenue
Manual Tuning 0.79% -0.66% 0.05% -0.22%

AFA 0.88% -0.18% 0.09% 0.01%
AFA vs Manual Tuning 11% 72% 80% 44.0%

In Figure 3, we provide an empirical example illustrating the
search results page for a buyer query "leather jacket". Using the
threshold recommended by AFA, we were able to display more
sponsored ads compared to the threshold determined by manual
tuning. Specifically, AFA enabled the presentation of four sponsored
ads, whereas the manual tuning approach yielded only two. This
empirical evidence supports our claim that AFA fine-tunes the
threshold more precisely than manual methods, thereby improving
ad scale. Additionally, we observed that all sponsored items were
relevant and of high quality, which correlates with the improved
performance and ad revenue as detailed in Table 1.

4 RELATEDWORK
There is limited research on automatic filter tuning in ads industry,
and even fewer studies on pipelines to facilitate the process. Prior
works can be categorized in the following categories.

Black box optimization (BBO) methods are essential for opti-
mizing functions without closed-form expressions, which are often
encountered in real-world scenarios involving complex systems.
Evolutionary algorithms (EAs) and genetic algorithms (GAs), such
as those described by [5], have been fundamental in exploring
search spaces in a gradient-free manner. While effective, these
methods can require a prohibitively large number of evaluations to
converge, which is not always practical [6].

To overcome the limitations of traditional EAs andGAs, surrogate-
based optimization (SBO) techniques have been developed. Bayesian
optimization was introduced by [7] as Efficient Global Optimiza-
tion (EGO), utilizing surrogate models to approximate objective
functions. Bayesian Optimization (BO), a subset of SBO, has gained

traction for its sample efficiency and effectiveness in noisy evalua-
tions, as highlighted by [2].

The incorporation of Bayesian optimization into multi-objective
optimization (MOO) has been an area of active research. [3] pre-
sented a framework for efficiently optimizing black-box functions
with multiple objectives. Bayesian optimization and MOO used to
improve their recommendation models in feeds and notification
[9].

Multi-objective optimization (MOO) addresses complex prob-
lems where multiple, often conflicting, objectives must be optimized
simultaneously. Researchers like [4] have significantly contributed
to this fieldwith algorithms such as NSGA-II, which efficiently guide
the search towards Pareto-optimal solutions under constraints such
as limited evaluations. The extension of BBO principles to MOO
has enabled the application of these techniques in various domains,
including e-commerce, where balancing trade-offs is crucial.

Recent work in MOO has focused on improving the efficiency
and scalability of these algorithms. For instance, [12] offers a robust
approach for handling many-objective problems by introducing
NSGA-III. Additionally, the integration of machine learning models,
as seen in work on the SPEA2 algorithm, has improved the handling
of complex objective landscapes [13]. However, most of these works
focus on the closed form of objective functions.

Hyper-parameter tuning: Hyper-parameter tuning is a crit-
ical step in machine learning that involves selecting the optimal
set of hyper-parameter for a learning algorithm to maximize its
performance. Hyper-parameter are the configuration settings used
to structure the learning process, as opposed to model parameters
that are learned from the data. There are several work focusing
on search mechanism like grid and random search which are the
simplest and most commonly used approaches [1]. There are other
efforts on Gradient-Based Optimization which uses gradient in-
formation to guide the search for optimal hyper-parameters [10].
There are bandit based approaches which dynamically allocates
resources to a set of hyper-parameter configurations and rapidly
eliminates poor-performing options [8].
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(a) An example of items retrieved for a query using suggested threshold by AFA (b) An example of items retrieved for a query using suggested threshold by a manual
approach

Figure 3: Comparing the retrieved items for a query "leather jacket" in our search engine using thresholds suggested by AFA and the manual
tuning approach, we observe notable differences. Figure 3(a) demonstrates that using the threshold recommended by AFA, we retrieved four
high-quality sponsored items. In contrast, Figure 3(b) shows that with the manually tuned threshold, only two sponsored items were retrieved.

Our research introduces an automated pipeline that applies new
advancements to automatically tune thresholds for advertising sys-
tems, a problem not previously solved. It combines Bayesian Belief
Optimization (BBO) and Multi-Objective Optimization (MOO) in a
novel way, providing a practical solution to a real-world challenge.

5 CONCLUSION
Our study conclusively demonstrates that AFA can autonomously
and effectively tune quality filters in advertising programs, out-
performing manual tuning methods in terms of both speed and
precision. AFA significantly reduces the number of necessary eval-
uations, enabling faster convergence towards optimal settings. This
automated approach streamlines the optimization process and mit-
igates the potential for human error and bias. The implications
of our findings are suggesting that AFA could be instrumental in
various optimization tasks across the digital advertising domain
and potentially in other fields.

Looking forward, our future plans involve (a) extending the ap-
plication of the proposed pipeline to other facets of our e-commerce
platform and (b) incorporating additional dimensions into the op-
timization approach, thereby broadening the scope and impact of
AFA.
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