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ABSTRACT
Search Enginemarketing teams in the e-commerce industrymanage
global search engine traffic to their websites with the aim to opti-
mize long-term profitability by delivering the best possible customer
experience on Search Engine Results Pages (SERPs). In order to do
so, they need to run continuous and rapid Search Marketing A/B
tests to continuously evolve and improve their products. However,
unlike typical e-commerce A/B tests that can randomize based on
customer identification, their tests face the challenge of anonymized
users on search engines. On the other hand, simply randomizing
on products violates Stable Unit Treatment Value Assumption for
most treatments of interest. In this work, we propose leveraging
censored observational data to construct bipartite (Search Query
to Product Ad or Text Ad) SERP interference networks. Using a
novel weighting function, we create weighted projections to form
unipartite graphs which can then be use to create clusters to ran-
domized on. We demonstrate this experimental design’s application
in evaluating a new bidding algorithm for Paid Search. Additionally,
we provide a blueprint of a novel system architecture utilizing Sage-
Maker which enables polyglot programming to implement each
component of the experimental framework.

CCS CONCEPTS
• Information systems→ Computational advertising; Sponsored
search advertising; • General and reference → Experimenta-
tion.
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1 INTRODUCTION
Search Enginemarketing teams in the e-commerce industrymanage
global search engine traffic with the aim of optimizing long-term
profitability by delivering the best possible customer experience
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on the most important web pages on the internet - Search Engine
Results Pages (SERPs). Figure 1 shows the prominent parts of SERP.
Search Engines continue to evolve their customer experience and
features due to social, technological and economic forces, includ-
ing privacy concerns, and further monetization of their properties
(SERPs). In anticipation of opportunities and risks that come with a
shifting landscape advertisers continuously innovate with new bid-
ding algorithms, improved paid and free search creatives, landing
pages etc. Randomized experiments, or A/B tests, are the standard
approach for evaluating causal effects of new features [18]. How-
ever, Search Marketing experiments are unlike conventional A/B
tests in industry that can randomize on customers as advertisers
don’t identify their customers when they are on a search engine i.e.
the ad publisher. Instead, advertisers may run A/B tests randomized
by geographic locations [29] using search engine’s geo-targeting
capabilities but due to ad publisher’s API limitations they are unable
to do so without having to clone entire advertisement campaigns.
The cloning of entire accounts is operationally expensive and time
consuming restricting the velocity at which they can run such trials.

Figure 1: Components of interest on a SERP.
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The next obvious choice for unit of randomization is usually
products or search queries. However for any A/B test, splits of
the unit of randomization should satisfy the assumptions of the
Neyman - Rubin causal framework [25], that is, no interference,
unconfoundness, overlap and no hidden treatment variations. For
example, if we simply randomly select products into control and
treatment groups, it should hold the unconfoundness and the over-
lap assumption given a large sample size but we still need to check
if the "no interference" assumption holds. We observe that for most
treatments of interest (e.g. new bidding algorithms for paid search
programs or improved title headlines for free search snippets), the
SERP page leads to interference between treatment and control
units causing the Stable Unit Treatment Value Assumption (SUTVA)
to fail, and consequently induces bias in the standard estimators
used to evaluate the value generated by the treatment. A standard
answer [7, 10] to this problem is to replace the “product-split” exper-
iment design with a “time-split” (or “switchback”) design, where the
entire market switches repeatedly between treatment and control.
In practice, such designs turn out to be equally time consuming
as geo-based splits since we need to account for long lengths of
adjustment period between switches due to the presence of an in-
termediary i.e. search engine that applies the treatment and takes
its own time which advertisers cannot control.

Another approach to dealing with spillovers or interference is
given by clustered experiments [3, 24] or in social network settings,
by network bucketing testing [4] where nodes that are relatively
clustered together are given the same assignment of treatment or
control [28]. Our work is inspired by similar clustered experiments
methods that have been applied to estimate and reduce bias in mar-
ketplace experiments [13]. Specifically, one such example involves
experimentation in internet ad auctions, where each auction con-
sists of a keyword along with a set of advertisers who submit com-
peting bids in order for their ads to be displayed when the keyword
is queried by a user. There is cross-unit interference because the
same advertiser or keyword may appear in multiple auctions. Basse
et al. [6] and Ostrovsky and Schwarz [23] make the observation that
the auction type used for one keyword does not meaningfully affect
how advertisers bid for other keywords. They then consider ex-
periments that group auctions into clusters by their keywords and
randomize auction formats across these keyword clusters, rather
than across advertisers, as a means to avoid problems with interfer-
ence. More broadly, in our context of Search Marketing, this idea
of cluster-level randomization corresponds to identifying product
or search query clusters that are relatively isolated from each other
and randomizing the interventions across product-clusters rather
than across products. Our primary contribution lies in leveraging
observational data to build bipartite (Search Query - Product) and
tripartite (Search Query - Paid Search Product - Free Search URL)
SERP interference networks. We introduce an innovative weight
function to generate weighted projections, transforming these net-
works into unipartite graphs. These graphs facilitate the clustering
of products that co-appear on SERPs through Paid Search Shopping
Ads, Text Ads, or Free Product Listings. The resultant clusters can
then be randomized during A/B tests to generate insights.

Note that more recently, Johari et al. [15] and Bajari et al. [5]
have proposed newer experiment designs where both search query
and product units are randomized simultaneously. While having a

similar flavor, neither framework applies easily to our problem of
interest. To begin with, we cannot control "search-query" assign-
ment as that is determined by the search engine i.e. the ad publisher.
Johari et al. [15] use a choice model to capture spillovers, which
captures a different kind of market than the one we consider, where
interference is mediated by a matching algorithm. Bajari et al. [5]
imposes a local interaction assumption, which does not hold in our
setting. However, when the graph is a bi-partite graph it holds some
similarity which we plan to explore in future work for measuring
the magnitude of spillovers.

The rest of this paper proceeds as follows. In Section 2, we use
the two-population search query - product case as a motivation to
build SERP interference network to test out new bidding algorithms.
In Section 3, we describe in greater detail our experiment design.
In Section 4, we further share details on testing a new bidding
model using this experimentation design. Section 5 provides an
overview of a system architecture blueprint for deploying such
experimentation frameworks. Finally, we discuss our findings and
future extensions in Section 6.

2 SETTING AND MOTIVATION
Shopping Ads is one of the ad formats supported on SERPs. To place
ads within the shopping ad carousel advertisers need to participate
in an auction competing with other advertisers. The format of the
auction is considered close to second price Vickrey–Clarke–Groves
(VCG) [9, 12, 30], although the exact ad publisher implementation
is a blackbox for us. As such to maximize long term profitability,
it is important to constantly develop, test and launch new bidding
algorithms responsible for valuating products worldwide. Let’s say,
to test out a new bidding algorithm we simply split on products.
The Stable Unit Treatment Value Assumption (SUTVA) presumes
that the valuation assigned to one product by the new algorithm
does not influence the profitability of other products. However,
in the context of shopping advertisements, this assumption may
be violated due to potential between-product interference. This
interference occurs when both a product with a treatment bid from
the new model and another with a control bid from the current
model participate in the same auction triggered by a search query,
deemed relevant by the ad publisher for both products. See figure
2 for an example. Such scenarios clearly breach SUTVA, challeng-
ing the validity of our evaluation method. If one product happens
to be assigned to treatment group and the other one to control,
then the difference in financial performance between the two prod-
ucts will be resulted from the combined effect of treatment and
between-product spillover effect, thus making the treatment effect
indistinguishable from the product spillover effect.

3 PRODUCT-CLUSTER RANDOMIZED
CONTROL TRIAL DESIGN

To address the challenge of interference in experimental designs,
we propose a preemptive modeling strategy that incorporates inter-
ference networks during the design phase. This approach allows us
to shift the unit of randomization from individual products to clus-
ters of products, as illustrated in Figure 3. Importantly, traditional
constrained randomization methods [20], such as segmenting by
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Table 1: Mock row in a Search Engine’s Query Report shared with the advertiser.

Search Query Impressions Product/Keyword Clicks Metric Day Ad Campaign

chopper axe 6 B00EOVRX06 1 2023-09-01 12345

Figure 2: Note the two Shopping Ad advertisements shown
in the same carousel. If these two products have bids from
different bidders (i.e. control and treatment) then SUTVA is
violated.

product categories, prove ineffective. This is because search en-
gines can associate broad upper funnel search queries (e.g., "Harry
Potter") with a diverse range of products across multiple categories
(e.g., a book, toy, or blanket related to Harry Potter). By leverag-
ing interference networks, our method ensures more robust and
accurate experimental outcomes.

Modeling Network Interference The notion of interference in
the network [14] we construct has to be aligned with the notion of
interference we are trying to estimate. Since the relevance of prod-
ucts to a user search query is determined by the search engine and
ranking algorithm, an advertiser cannot use its internal datasets
that provide product to keyword mapping e.g. e-commerce web-
site’s own search to product results. Instead, we use daily reports
provided by the ad publisher itself. These reports have information
onwhich actual user search query on the search engine wasmapped
to which shopping ads product by the ad publisher. A sample mock
row from such a report is shown in Table 1. We use these search
query reports to construct an undirected bipartite search query -
product graph using the number of impressions as edge weight.

Unipartite Projection To apply one mode projection of the bi-
partite graph onto the product nodes in order to model the between-
network interference, we needed a scoring function to attribute

weights to the resulting graph edges. Since, we start with large
number of products ( 200M+), we could not directly use the edge
weighting functions proposed by Stram et al. [27] due to the compu-
tational complexity. Instead we propose the following edge weight
function that requires significantly less computation:

𝑊uni (𝑎, 𝑏) =
𝑛∑︁
𝑖=1

1
log𝑒 (𝑓𝑠𝑞𝑖 )

min(𝑊bi (𝑠𝑞𝑖 , 𝑎),𝑊bi (𝑠𝑞𝑖 , 𝑏))
max(𝑊bi (𝑠𝑞𝑖 , 𝑎),𝑊bi (𝑠𝑞𝑖 , 𝑏))

𝐼 [𝑠𝑞𝑖 , 𝑎, 𝑏]

(1)

where:

(1) 𝑊uni (𝑎, 𝑏) is the edge weight in the unipartite graph (one-
mode projection) between product a and b.

(2) 𝑊bi (𝑠𝑞𝑖 , 𝑎) is edge weight between search query 𝑖 and 𝑎 in
the original bi-partite graph.

(3) 𝑓𝑠𝑞𝑖 is the number of distinct products that a particular
search query drives impressions to. Since the distribution
is right-skewed i.e. few upper funnel queries drive impres-
sions to only a few distinct products, weighing down by the
log of frequency of search query helped us to weigh down
edge weight contributions between two products from very
generic queries.

(4) 𝐼 [𝑠𝑞𝑖 , 𝑎, 𝑏] is 1 if search query 𝑠𝑞𝑖 trigger an impression for
both product 𝑎 and 𝑏 as represented by the presence of an
edge in the original bipartite graph, otherwise 0.

Using the above approach to take a weighted one-mode pro-
jection of the bipartite graph leads to an increase in the number
of edges, since if a search query links to 𝑛 products, we need to
consider

(𝑛
2
)
pairs of edges.

Graph Partitioning Methodology Constructing a product
graph following the above approach then allows us to use net-
work dismantling algorithms [8] as oppose to naive connected
components approach to creating product clusters. Historically, the
community identification problem is a well studied problem in com-
puter science literature [11, 21, 22]. However, a lot of the proposed
methods wouldn’t scale up since we are dealing with graphs that
are as large as 200M+ nodes and 400M+ edges. Thus, anything that
runs in 𝑂 ( |𝑉 |2) or 𝑂 ( |𝐸 |2) is not practical. Moreover during the
graph partitioning phase, we needed to find a balance between two
objectives:

(1) Maximize the number of product clusters as they translate
to randomization units. More clusters equal more power for
our test.

(2) Minimize the between clusters edge weights.
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Figure 3: Birds-eye view of our experiment design. First, we
fetch the search query reports from the ad publisher and
create a search-query, product bipartite graph. Then we take
a weighted one mode projection and finally use a clustering
algorithm to cluster products.We then do a stratified random
split of product clusters.

Since, the more clusters we create, the less isolated they are,
these two objectives are conflicting. For example, if we want to
have zero connections across clusters, then the obvious solution is
to have one cluster only. This, of course, would not lend itself to an
A/B test. To balance the above two objectives, first we look at the
percentage edge weight across 𝑘 clusters (𝐶1, ...,𝐶𝑘 ) i.e. leakage as
𝐿:

𝐿 =

∑𝑘
𝑖=1

∑
𝑗∈𝐶𝑖 ,𝑘∉𝐶𝑖

𝑊uni ( 𝑗, 𝑘)∑
𝑗,𝑘𝑊uni ( 𝑗, 𝑘)

Secondly, we use a clustering algorithm that is designed for bal-
anced clustering, that is, all clusters should have roughly equal

size. We evaluated naive connected components, power iteration
clustering (PIC) [19], and METIS [17]. Connected components min-
imizes leakage, but suffers from extreme imbalance. PIC improves
cluster imbalance, but suffers from high leakage. We choose to use
METIS partitioning algorithm which is an extremely efficient and
fast implementation of graph partitioning algorithm for undirected
weighted graph. METIS adopts an objective function to minimize
the number of weighted edges whose vertices belong to different
partitions. The METIS graph partitioning consists of three phases:
(i) In the graph coarsening phase, a series of successively smaller
graphs is derived from the input graph. This process continues
until the size of the graph has been reduced to just a few hundred
vertices, (ii) In the initial partitioning phase, a partitioning of the
coarsest and hence, smallest, graph is computed and finally (iii) in
the un-coarsening phase, the partitioning of the smallest graph is
projected to the successively larger graphs by assigning the pairs
of vertices that were collapsed together to the same partition. After
each projection step, the partitioning is refined using heuristics to
iteratively move vertices between partitions as long as such moves
improve the quality of the partitioning. The advantages of this
methodology are threefold:

(1) It runs in 𝑂 ( |𝐸 |) time, which is extremely efficient for large
graphs.

(2) It is the only algorithm that allows precise control of both
the number partitions and the balances of the overall split.

(3) It is the only algorithm that is specifically trying to minimize
the edgecut (defined as weighted sum of edges that straddle
between different clusters).

Optimal number of clusters:We want to be able to identify
as many nearly independent clusters as possible with leakage con-
trolled within the tolerance. We plot leakage against various choice
of 𝑘 (number of partitions), and identify a 𝑘 that is as large as
possible where the leakage is as small as possible (i.e. identifying
the elbow point). For the new shopping ad bidder experiment, we
ended up having 10,000 clusters and 36% edge weight across clus-
ters. Note, the above measure (𝐿) overstates the spillover effects as
they consider spillover between clusters that may end up being in
the same group (C or T).

Magnitude of Spillover: The search query - product bipar-
tite graph we construct usually has a clustering coefficient [20] of
around ∼ 0.6 for most marketplaces which indicates tightly knit
groups in the network suggesting high spillover. However, to em-
pirically provide a lower bound on the magnitude of bias due to
interference we need to conduct a meta-experiment that random-
izes over two experiment designs: one Bernoulli randomized, one
cluster randomized. We can then check for a statistically signifi-
cant difference between the total average treatment effect estimates
obtained with the two designs [26]. In the absence of business ap-
proval to run such a meta-experiment, the next best directional
data point we have is from our previous attempt to run simple
product-split A/B test. The impact measured from that experiment
had been largely overstated (∼ 44% lift) when compared to the
actual lift (∼ 24% lift) observed.
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4 APPLICATION

In this section, we discuss the use-case motivated in Section 2 to
show an application of the product-cluster randomized control trial
design. We had developed a new machine learning based product
valuation model for our shopping ads program to improve over the
current in production heuristic bidding algorithm and we wanted
to run an online experiment to understand the impact on the long
term profit. We used the methodology described in Section 3 to
create product clusters based on search query reports from the ad
publisher for the past one year.

Constrained Randomization Once we had the clusters, we
created strata of clusters with similar characteristics instead of
randomizing them in a simple bernoulli fashion. We measure the
net impressions, clicks, cost and profit of each of the product cluster
and stratify clusters on those axis.

Experiment Setup The goal of this experiment was verifying
the null hypothesis that the new bidding strategy is better than the
current bidding strategy in term of bidding efficiency i.e. increase
of net long term profitability while maintaining the total ad spend.
We matched the spend between control and treatment groups to
control for elasticity as well as to comply with spend constraints at
account level. Finally, we run a simulation based power analysis for
cluster randomized designs using difference-in-differences (DID)
estimation [1].

Measurement To measure the impact of the proposed valuation
method, a DID analysis for cluster randomized designs is performed
for two weeks of periods where spends are closely matched. The
results from the DID analysis showed a lift in click-through-rate for
the treatment group which was consistent with the lift observed
post roll out of the new bidding model. Note that since model errors
can be correlated within cluster, failure to control for within-cluster
error correlation can lead to misleading small standard error and
consequently low p-values. Although we do not control for within-
cluster error correlation in the model, post-estimation we obtain
cluster-robust standard errors as proposed by White [31].

5 SYSTEM ARCHITECTURE

Our product-cluster randomized control methodology as detailed in
Section 3 asks for a highly scalable and flexible infrastructure with
very different compute requirements and library support for each
step. To address these challenges we propose the "Search Marketing
Lab" using AWS SageMaker [16] pipelines which allows to define a
series of interconnected processing steps where each step (i) can
be provided its own docker image that has our code in preferred
language and (ii) can have its own compute environment. This
allows for polyglot programming. Here, we briefly focus on the
split generation component. In particular, we break the approach
into 3 modules:

(1) Graph Generation which requires parsing >1 year of daily
search query report data and Keyword data to build a graph

Figure 4: Birds-eye view of Product-cluster split generation
system.

edge list - thus requiring spark’s distributed compute. We
use a cluster of memory-optimized instances for this step.

(2) Graph Partitioning In this step we use the METIS graph
partitioning algorithm. METIS is written entirely in ANSI
C (no distributed implementation) but there is a python
wrapper for the METIS library [17] that we use. We use a
single compute-optimized instance for this step.

(3) Power Analysis In this module we obtain cluster-robust
standard errors after fitting a linear mixed effect model, using
R’s cluster.vcov [2] implementation to return a multi-way
cluster-robust variance-covariance matrix and perform in-
ference for estimated coefficients using R’s coeftest.

SageMaker Pipeline executions can be scheduled using Amazon
EventBridge passing run-time parameters. This allows to define a
single pipeline with multiple executions (e.g. one per marketplace)
based on input parameters. The serves as a blueprint for a large scale
production system combining multiple languages (R, Python on
Spark) utilizing each to their respective strengths (R for statistical
analysis modules, python on Spark for ETL) triggering SageMaker
processing jobs orchestrated via SageMaker Pipelines.

6 CONCLUSION AND FUTUREWORK

In this paper, we present a cluster-based randomized control test de-
sign which enables search marketing e-commerce teams to do fast
online experiment launch while minimizing interference between
experimental groups. Our key idea is to use observational data to
construct bipartite (Search Query - Product) SERP interference net-
works and use a novel weight function to take weighted projections
to form unipartite graphs which can be use to create clusters of
products appearing together on SERP (via Paid Search shopping
ads, text ads or Free Search listings), and then using those clus-
ters to randomize on. Online A/B testing results for the treatment
group are consistent with the lift observed post roll out of a new
bidding model thereby showing that the A/B test design gives a
good estimate of the actual lift. In our previous attempts to run sim-
ple product-split A/B test the impact measured from experiments
had been largely overstated because of spillover effects. Lastly, we
present a novel simplified system architecture using SageMaker
which allows scientist to do polyglot programming using compute
and language suitable for each scientific module.

One downside of inferring interference network from search
query report data is that such observational data is censored, that
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is, we only have data when we win the auction. In future, we are
investigating using SERP page data from platforms like seoClarity
to get better visibility into SERP interference networks and allow
us to incorporate not just shopping ad products but also Text Ads
keyword and Free Search URLs to build comprehensive ad units
spanning across all Search channels - Text Ads, Shopping Ads and
Free Search. More recently, this also includes large language models
powered results like shown in Appendix. We can than use these
ad units to design cross-channel substitution experiments. We are
also working on investigating further into the stability of these
clusters over time and that they can be updated in real time as more
data flow in from search engines. Finally, we are exploring recent
proposed experiment designs by Bajari et al. [5] to measure the
actual magnitude of spillovers.
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A COMPONENTS OF INTEREST ON RECENT
LLM POWERED SERPS

Figure 5: Evolving Large Language Model powered SERPs
with components of interest highlighted in rectangle boxes.
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