
A Bag of Tricks for Scaling CPU-based Deep FFMs to
more than 300m Predictions per Second

Blaž Škrlj
Outbrain

bskrlj@outbrain.com

Benjamin Ben-Shalom
Outbrain

bbshalom@outbrain.com

Grega Gašperšič
Outbrain

ggaspersic@outbrain.com

Adi Schwartz
Outbrain

aschwartz@outbrain.com

Ramzi Hoseisi
Outbrain

rhoseisi@outbrain.com

Naama Ziporin
Outbrain

nziporin@outbrain.com

Davorin Kopič
Outbrain

dkopic@outbrain.com

Andraž Tori
Outbrain

atori@outbrain.com

ABSTRACT
Field-aware Factorization Machines (FFMs) have emerged as a pow-
erful model for click-through rate prediction, particularly excelling
in capturing complex feature interactions. In this work, we present
an in-depth analysis of our in-house, Rust-based Deep FFM im-
plementation, and detail its deployment on a CPU-only, multi-
data-center scale. We overview key optimizations devised for both
training and inference, demonstrated by previously unpublished
benchmark results in efficient model search and online training.
Further, we detail an in-house weight quantization that resulted in
more than an order of magnitude reduction in bandwidth footprint
related to weight transfers across data-centres. We disclose the
engine and associated techniques under an open-source license to
contribute to the broader machine learning community. This paper
showcases one of the first successful CPU-only deployments of
Deep FFMs at such scale, marking a significant stride in practical,
low-footprint click-through rate prediction methodologies.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Information systems → Data mining; Data stream mining;
Computational advertising; Information integration; • Com-
puting methodologies→Machine learning.

KEYWORDS
Incremental machine learning, stream mining, factorization ma-
chines, large-scale machine learning

ACM Reference Format:
Blaž Škrlj, Benjamin Ben-Shalom, Grega Gašperšič, Adi Schwartz, Ramzi
Hoseisi, Naama Ziporin, Davorin Kopič, and Andraž Tori. 2018. A Bag of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August, 2024, Barcelona, SPA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

AutoML Model
search

Incremental (Online) Model training

Path to production

Model Transfer
and storage

Model serving

Figure 1: Overview of the key topics discussed in this paper.
Performance optimizations that spanmodel search (AutoML),
online model training, storage, transfer and serving are dis-
cussed.

Tricks for Scaling CPU-based Deep FFMs to more than 300m Predictions
per Second. In Proceedings of (KDD ’24). ACM, New York, NY, USA, 6 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Design and development of machine learning approaches for the
domain of recommendation systems revolves around the interplay
between scalability and approximation capability of classification
and regression algorithms. Currently, many deployed recommen-
dation engines rely on factorization machine-based approaches;
this is mostly due to good trade-offs when it comes to scalability,
maintainability and data scientists’ involvement in building such
models. Even though contemporary recommenders started to in-
creasingly rely on language model-based techniques [18], utilizing
factorization machines remains de facto solution for large-scale
"screening" of candidates that are to be served. Such candidates can
include from unseen items (online stores), to movie recommenda-
tions, to ads [6, 19]. Scalability of factorization machines enables
creation of real-time systems that handle hundreds of millions of

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


KDD ’24, August, 2024, Barcelona, SPA Škrlj, et al.

requests in predictable and maintainable manner. In recent years,
two main branches of methods have emerged. Approaches based
on frameworks such as TensorFlow [1] and PyTorch [12] enabled
construction of highly expressive architectures that often require
specialized hardware for efficient productization [5, 7, 11, 16]. CPU-
only, single instance – single pass alternatives are fewer, and revolve
around highly optimized C++ or Rust-based approaches that ex-
ploit consumer hardware as much as possible. The latter is the main
focus of this paper (overview in Figure 1).

2 FWUMIOUS WABBIT (FW) - AN OVERVIEW
We proceed with a discussion of Fwumious Wabbit (FW), an in-
house, Rust-based factorization machine-based system currently
used in production for large-scale recommendation1.

2.1 Origins of FW and Vowpal Wabbit (VW)
The FW derives from Vowpal Wabbit (VW) [3], a high-performance,
scalable open-source ML system recognized for its efficiency on
large datasets 2. While VW primarily uses logistic regression for
tasks like click-through rate prediction, it lacks readily available
advanced extensions found in the domain of factorization machines.
One of the more expressive variations of factorization machines
are the Field-aware Factorization Machines (FFMs), described in
detail in the works of Juan et al. [9, 10]. Building on this foundation,
we enhanced the FFM architecture by integrating elements of deep
learning. Specifically, a multi-layer perceptron (MLP)-like structure
in conjunction with the traditional FFM (and logistic regression)
components. The architecture’s computational complexity, a no-
table challenge, contributes to its rarity in existing benchmarks.
When implemented in standard frameworks like TensorFlow, the
architecture struggles to scale effectively for practical use.

Despite these challenges, our deep learning-extended FFMmethod
demonstrated significant performance gains over other tested al-
gorithms in internal assessments. However, scaling this method
was not straightforward. It was only through invoking BLAS [4],
that we achieved critical performance enhancements, allowing for
practical full-scale deployment3. An overview of the architecture is
shown in Figure 2. . Key parts of the architecture are

lr(𝑤, 𝑥) =
𝑛∑︁
𝑗

𝑤 𝑗 · 𝑥 𝑗 + 𝑏; ffm(𝑤, 𝑥) =
𝑛∑︁

𝑗𝑖=1

𝑛∑︁
𝑗2=𝑗1+1

(𝑤 𝑗1,𝑓2 ·𝑤 𝑗2,𝑓1 )

· 𝑥 𝑗1𝑥 𝑗2 .

Neural part (matrix form),

ffnn(W1,2,...,𝑛,X) = 𝑎𝑛 (. . . 𝑎2 (𝑎1 (X ·W1) ·W2) . . . ) ·W𝑛,

takes as input both FFM and LR’s outputs, i.e.

dffm(W1,2,...,𝑛,w𝑏 ,w𝑐 , x) =ffnn(W1,2,...,𝑛, 𝑀𝑒𝑟𝑔𝑒𝑁𝑜𝑟𝑚𝐿𝑎𝑦𝑒𝑟

(lr(w𝑏 , 𝑥), 𝐷𝑖𝑎𝑔𝑀𝑎𝑠𝑘 (ffm(w𝑐 , 𝑥))) .

1The engine with main implementations discussed in this paper is freely available as
https://github.com/outbrain/fwumious_wabbit.
2https://vowpalwabbit.org/
3https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_neural.rs

LR

FFM

DiagMask

Embeddings

MergeNormLayer

ActivationsDNN

Figure 2: Architecture of implemented CPU-based DeepFFMs.
Main blocks are the neural network (gray), logistic (yellow)
and FFM (red) ones.

Here, MergeNormLayer represents the operator that combines out-
puts of FFM and LR parts and applies normalization. Further, Diag-
Mask represents diagonal mask of FFM space, inducing half smaller
number of combinations requiring down-stream processing4.

2.2 Criteo, Avazu and KDD2012 - a benchmark
and stability analysis

Even though we evaluated FW extensively on internal data sets
(and online, in A/B tests), where it showed consistent dominance,
results on published data sets such as Criteo are also of relevance
for dissemination of engines’ behavior and overall performance.
In this section we overview a benchmark we conducted to assess
general behavior of VW and FW. We also implemented DCNv2 [15,
17], a Tensorflow-based strong baseline5. For considered data sets
(Criteo6, Avazu7 and KDD20128), log transform of continuous fea-
tures was conducted and no additional data pruning (rare values
etc.) was conducted (as is done in our system)9. The hyperparam-
eters considered include power of t, learning rates for different
types of blocks (ffm, lr), regularization amount (L2 norm, VW). For
DCNv2 we considered different learning rates, cross layer numbers,
dropout rates and beta parameters. Results of the benchmark are
summarized in Figure 3. For each data set, algorithms considered
are visualized as AUC scores computed in a rolling window of 30k
instances10.

The trace in each plot represents the average performance (95%
CI), and light-gray regions represent model evaluations that were
out-of-distribution – this aspect is particularly relevant for under-
standing stability of different approaches and their sensitivity to
hyperparameter configurations. For example, we observed that

4See https://github.com/outbrain/fwumious_wabbit/blob/main/src/regressor.rs for
more details.
5Unique hash was assigned to each value for this baseline for ease of implementation.
6https://www.kaggle.com/c/criteo-display-ad-challenge
7https://www.kaggle.com/c/avazu-ctr-prediction/data
8https://www.kaggle.com/c/kddcup2012-track2
9Such minimal pre-processing is within reach of a regular production.
10RIG and Log-loss scores are aligned with AUC-based results, hence only these are
reported for readability purposes

https://github.com/outbrain/fwumious_wabbit
https://vowpalwabbit.org/
https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_neural.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/src/regressor.rs
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/kddcup2012-track2


A Bag of Tricks for Scaling CPU-based Deep FFMs to
more than 300m Predictions per Second KDD ’24, August, 2024, Barcelona, SPA

Table 1: Stability analysis and overall performance. Rows
with max test set performance highlighted.

Avazu (window=30k)
algo avg median max std min test

VW-linear 0.6832 0.7016 0.8200 0.0668 0.4664 0.7596
VW-mlp 0.6755 0.6984 0.8200 0.0748 0.4664 0.7596
FW-DeepFFM 0.7648 0.7654 0.8507 0.0243 0.4764 0.7916
FW-FFM 0.7524 0.7524 0.8234 0.0227 0.4816 0.7693
DCNv2 0.7750 0.7745 0.8326 0.0202 0.5005 0.7763

Criteo (window=30k)
algo avg median max std min test

VW-linear 0.7340 0.7460 0.8219 0.0556 0.4768 0.7920
VW-mlp 0.7247 0.7425 0.8211 0.0670 0.4768 0.7920
FW-DeepFFM 0.7655 0.7689 0.8053 0.0179 0.4796 0.7803
FW-FFM 0.7578 0.7621 0.8020 0.0198 0.4682 0.7742
DCNv2 0.8042 0.8052 0.8370 0.0118 0.4958 0.8085

KDDCup2012 (window=30k)
algo avg median max std min test

VW-linear 0.6333 0.6419 0.8336 0.0807 0.3430 0.7688
VW-mlp 0.6309 0.6402 0.8336 0.0869 0.3759 0.7688
FW-DeepFFM 0.7323 0.7400 0.8781 0.0414 0.3687 0.7967
FW-FFM 0.7228 0.7318 0.8382 0.0391 0.3651 0.7641
DCNv2 0.7589 0.7610 0.8718 0.0301 0.4792 0.7734

adding deep layers to VW models in most cases resulted in worse
performance. Carefully tuned VW hyperparameters yielded suf-
ficient performance, however, indicate potentially cumbersome
model search (when considering new use cases/data) in practice.
Similar behavior was observed for DCNv2. The dotted black lines
represent the overall best single-window performance, and per-
formance on a given data set’s test set11 Overall, initial phases
of learning revealed VW’s capability to adapt with less data, the
DeepFFMs dominate after enough data is seen by the engines. Supe-
rior performance was observed by DCNv2 on Criteo, yet not other
data sets (all features considered). The benchmark demonstrates
that progressively more complex architectures tend to result in
better modeling capabilities, and with them, better AUCs in this
benchmark. In terms of runtime, on the same hardware, Criteo
data set could be processed on average in 32min by VW, and 31min
by FW (linear model vs. DeepFFM). Deep VW variations took sub-
stantially longer, around 65min on average (batch size of 2k). This
result indicates that FW enables more powerful models with same
time bounds for training. The DCNv2 (CPU) baseline was 30%-50%
slower compared to DeepFFM runs. These tatistics were obtained
based on tens of thousands of runs that represented different al-
gorithm configurations (both hyperparameters and field specifica-
tions). Being CPU-based, the described approaches enable seamless
scaling to commodity hardware, resulting in lower training and
inference costs in practice.

3 FW IN PRACTICE: SERVICE
ARCHITECTURE OVERVIEW

This section aims to facilitate understanding of subsequently dis-
cussed optimizations that were put in place to enable scaling of
11for KDD, we took last 2m instances to capture apparent variability in data better,
other data sets are split as reported in their origin publications.

Deep FFMs. The implemented FW contains both training and infer-
ence logic. The training logic is relevant for incrementally training
more than a hundred models, online, every 𝑛 minutes (depends
on the model). Training jobs are separate deployments that au-
tomatically query for relevant chunks of data, download, update
based on existing weights and send the weights to the serving layer.
Serving layer on-the-fly reconstructs the final inference weights
via a patching mechanism discussed in Section 6, and exposes the
weights as part of the serving service that handles millions of re-
quests with new data. Based on the effect of predictions, data is
streamed back to the system as training data (a feedback loop).
The training jobs are Python-based services that interact with the
binary via process invocations. Serving binds the inference capabil-
ities with the serving (Java) service directly via a foreign function
interface (ffi)12. The architecture enables separation of concerns
– training jobs are separate to inference jobs, albeit at the cost of
needing to send the updated weight data between services; this is
one of the key performance bottlenecks that was addressed in this
work.

4 MODEL TRAINING IMPROVEMENTS
We next discuss main improvements implemented at the level of
training jobs and offline research.

4.1 Speeding up model warm-up phase
Model warm-up corresponds to a phase in model training where
model starts with past data, and "catches up" with present data as
fast as possible. We identified efficient data pre-fetching as a crucial
optimization for speeding up this process. By implementing async
learning cycles, multiple rounds of "future" data can be downloaded
upfront, making sure the learning engine has constant influx of data.
Data pre-fetch in practice results in up to 4x faster pre-warming.
Within the cloud environment where the jobs are deployed, we
can control machine "taints", i.e. signatures that determine their
hardware profile. Pre-warm jobs have dedicated taints, which in
practice results in machines that are newer and stronger.

4.2 Hogwild-based training
An optimization that significantly improved model pre-warm time
is the previously reported Hogwild-based model training[13], im-
plemented also for Fwumious framework (as part of this work).
Here, weight overlaps/overrides are allowed as the trade off for
multi-threaded updates. By tuning Hogwild capacity to tainted
machines, we observed multi-fold speedups in model warm-up. In
practice, the times for bigger models went from multiple weeks
to days, and in most cases around a day of training (to catch up).
Weight degradation due to Hogwild was A/B tested and does not
appear to cause any noticeable RPM drops. Summary of Howgild-
based training compared to control (no such training) is shown
in Table 2. Utilization of hogwild has shown substantial benefits
also when utilized during online training (e.g., every 5min), and
enabled scaling 100% bigger models. To the best of our knowledge,
this is one of the first demonstrations of consistent Hogwild-based
training improvements for Deep FFMs.

12https://github.com/outbrain/fwumious_wabbit/blob/main/src/lib.rs

https://github.com/outbrain/fwumious_wabbit/blob/main/src/lib.rs


KDD ’24, August, 2024, Barcelona, SPA Škrlj, et al.

0 2 4

#inst. (VW-linear) ×107

0.5

0.6

0.7

0.8

AU
C

(w
s=

30
k)

0 2 4

#inst. (VW-mlp) ×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-DeepFFM)×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-FFM) ×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (DCNv2) ×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (VW-linear) ×107

0.5

0.6

0.7

0.8

AU
C

(w
s=

30
k)

0 2 4

#inst. (VW-mlp) ×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-DeepFFM)×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (FW-FFM) ×107

0.5

0.6

0.7

0.8

0 2 4

#inst. (DCNv2) ×107

0.5

0.6

0.7

0.8

0 1 2

#inst. (VW-linear) ×107

0.5

0.6

0.7

0.8

AU
C

(w
s=

30
k)

0 1 2

#inst. (VW-mlp) ×107

0.5

0.6

0.7

0.8

0 1 2

#inst. (FW-DeepFFM)×107

0.5

0.6

0.7

0.8

0 1 2

#inst. (FW-FFM) ×107

0.5

0.6

0.7

0.8

0 1 2

#inst. (DCNv2) ×107

0.5

0.6

0.7

0.8

Figure 3: Visualization of overall performance of different algorithms (single-pass) across different benchmark data sets
(top-down: Criteo, Avazu, kddcup2012. Visualizations show traces of all trained models (per engine).

Table 2: Impact of Hogwild-based training.

Implementation Warmup time (same period)
FW-deepFFM-control 8d
FW-deepFFM-hogwild 23h (48 threads)

Implementation Online training (same period)
FW-deepFFM-control 20m
FW-deepFFM-hogwild 4m (4 threads)

4.3 Sparse weight updates
The next discussed optimization is related to how gradients are
accounted for during model optimization itself. We observed that
deep layers, albeit being parameter-wise in minority compared to
FFM part, take up considerable amount of time during optimiza-
tion. To remedy this shortcoming, we identified an optimization
opportunity that is a combination of activation function used in
most models, 𝑓 (𝑥) = max(𝑥, 0), and the specific implementation of
FW. By realizing that we can identify zero global gradient scenar-
ios upfront, prior to updating any weights, we could skip whole
branches of computation with no impact on learning. The perfor-
mance (speed) of training, however, was across-the-board improved

Table 3: Speedups observed due to sparse weight updates.

#Hidden layers 1 2 3 4
Speedup (sparse updates) 1.3x 1.8x 2.4x 3.5x

by 30% for most models, and for deeper ones by up to 3x, see Ta-
ble 3 for more details. We observed that at most two hidden layers
were feasible for production, hence any further speedups than ob-
served 30% were not feasible in practice. This optimization was
possible due to ReLU’s nature; this activation maps weights to zeros,
effectively enabling identification of compute branches that need
to be skipped during updates.

5 MODEL SERVING IMPROVEMENTS
A considerable optimization we observed could take place in our
system is context caching. Each request can be separated into con-
text and candidates. For all candidates in the request, the context is
the same, even though the recommended content’s features differ
– this implies part of the feature space is very consistent for each
candidate batch. To exploit this property, a dedicated serving-level
caching scheme was put in place. FW at this point does an addi-
tional pass only with the context part, where it identifies and caches
frequent parts of the context. On subsequent candidate passes it
reuses this information on-the fly instead of re-calculating it for
each context-candidate pair. Deployment impact of context caching
is shown in Figure 413. We next discuss (SIMD) Instruction-aware
forward pass. Another optimization that is particular to infer-
ence is proper exploitation of SIMD intrinsics. These hardware
instruction level optimizations, however, needed to be carefully
implemented as the space of serving hardware is not homogeneous,

13https://github.com/outbrain/fwumious_wabbit/blob/main/src/radix_tree.rs

https://github.com/outbrain/fwumious_wabbit/blob/main/src/radix_tree.rs


A Bag of Tricks for Scaling CPU-based Deep FFMs to
more than 300m Predictions per Second KDD ’24, August, 2024, Barcelona, SPA

Figure 4: Impact of context caching on inference time.

Figure 5: Relative impact of SIMD-enabled (blue, after drop)
vs. SIMD-disabled (purple) FW in production (inference).

meaning that on-the-fly instruction detection, and subsequent uti-
lization of appropriate binary needed to be put in place. SIMD
intrinsics were successfully used to speed up forward pass (infer-
ence) with no loss in RPM performance, and resulted in a consistent
20% speedup for all serving14. Real-life example of deployed SIMD-
based FW vs. the control (no SIMD) is shown in Figure 5. Up to
25% faster inference (and with it lower resource utilization) were
observed.

6 STORAGE AND TRANSFER OPTIMIZATION
As discussed in previous sections, training and serving jobs are
separated. This separation of concerns, albeit easier to maintain,
contributes to a major drawback: weight sending across the net-
work. Model weights need to be constantly updated, which incurs
substantial bandwidth costs. For example, hundreds of live mod-
els that take up to 10G of memory (per update) are constantly
transferred across the network, resulting in a substantial bandwidth
overhead to ensure low-latency online serving.

Model patching. The first improvement we implemented is
the concept of model patching. This process is inspired by appli-
cation of software patches (in general), albeit tailored to internal
structure of FW’s weights. Each trained model consists of training
weights and the optimizer’s weights. The latter are not required for
actual inference, which immediately reduces the required space by
half. Further, each subsequent inference weights update (inference
weights can be multiple GB) first computes model diff – byte-level

14https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_ffm.rs

difference between old and new weights. This is possible due to
a consistent memory-level structure of weight files. The diffs are
compressed, sent to the serving layer, unpacked and applied to pre-
vious weights file to obtain the new set of weights (inference). This
process takes tens of seconds, however, further reduces memory
footprint on the network by more than 100% (less than a GB of
updates per model after patching Deep FFMs).

First, instead of storing absolute indices of bytes that change,
relative locations are stored, resulting in a considerable storage
saving. Next, small integers denoting these differences are stored as
a custom integer type – instead of storing whole ints, compressed
versions (small ints are impacted the most) are stored, leading to fur-
ther improvements15. As patcher works at the level of bytes, we also
successfully tested it for internal Tensorflow-based flows (reduced
bandwidth for sending models). Inspired by recent weight quanti-
zation advancements in the field of large language models [2, 14],
we implemented a variation of 16b weight quantization that,
when combined with the byte-level patching mechanism, offered
considerable bandwidth and model storage improvements. The
quantization algorithm was designed to account for the following
use-case specific properties. First, by ensuring consistently small
weight patches, the quantization ensures consistently smaller net-
work load. Second, the quantization and dequantization proce-
dures must be fast, as they need to happen within a designated time
window after each training round (procedure has tens of seconds
at most at its disposal for full weight space). Finally, the algorithm
needs to be able to dynamically select viable weight ranges, as
we observed considerable variation in weight update sizes based
on e.g., time of the day (traffic amount). The final version of the
algorithm can be summarized as follows. For each online model
update (e.g., 5min window), weights are first traversed to obtain
the minimum and maximum values (weights). These statistics are
required to dynamically determine the range of relevant weight
bins, as the amount of possible values for 16b representation is
small (around 65k). Let𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑛 |𝑤𝑖 ∈ R} denote the
set of all (𝑛) weights and 𝑏max denote the number of possible weight
buckets. Once the minimum and maximum are obtained, the bucket
size is computed as

bucket𝑠 =
max(𝑊 ) .round(𝛼) −min(𝑊 ) .round(𝛽)

𝑏max
.

Note that minimum and maximum are rounded to 𝛼 and 𝛽 deci-
mals. This consideration stems from empirical results that indicated
that considering full precision bounds results in less stable patch
sizes 16. When constraining minimum and maximum to certain
precision, behavior stabilized whilst preserving performance and
online behavior. In the second pass, weights are quantized – for
each weight, its 16b representation is computed and stored. This
results in computing

((𝑤𝑖 −min(𝑊 )/bucket𝑠 ) .round().castTo16b().convertToBytes(),

i.e. a set of bytes that represent a certain weight bucket. Bytes
are stored in FW weight format and re-used during inference. An
important detail also concerns metadata required to perform this
type of quantization; the original weights file is enriched with a

15https://github.com/outbrain/fwumious_wabbit/blob/main/weight_patcher
16(quantization output tended to fluctuate more)

https://github.com/outbrain/fwumious_wabbit/blob/main/src/block_ffm.rs
https://github.com/outbrain/fwumious_wabbit/blob/main/weight_patcher


KDD ’24, August, 2024, Barcelona, SPA Škrlj, et al.

Table 4: Impact of model quantization on the global produc-
tion CTR model.

Weight processing Avg. time spent Update file size
no procecssing (baseline) / 100%

fw-quantization 2s 50%
fw-patcher 45s 30±5%

fw-patcher + fw-quantization 8s 3±2%

header that contains the bucket size and weight minimum – these
two properties are sufficient for efficient weight reconstruction
when/where relevant17. Results on a representative CTR model are
shown in Table 4. Metrics of interest are time to produce patch
and the final patch/weight update’s size. Patching and quantization
result in up to 30x smaller model updates.

Figure 6: Speedup observed when jointly using quantization
and model patching (as opposed to just patching).

Note that weight patching and quantization on their own already
at least halve the size of weights that are used in serving and pro-
duction. Further, by combining the two approaches, we observed a
non-linear improvement in patch sizes – around 10x smaller up-
dates are regularly produced. The quantized patches-based model
showed small lifts in and online A/B against control with no quanti-
zation applied, considerably reducing network bandwidth required
with a small positive business impact (+0.15% RPM). Speedup in a
real-life production system due to compound effect of quantization
and patching can be observed in Figure 6. Rightmost part of the
plot represents total time spent patching and computing quantized
weights.

7 CONCLUSIONS AND OPEN PROBLEMS
In this paper, we presented a collection of implementation details
for scaling CPU-based DeepFFMs to operate at a multi-data-center
scale, capable of handling hundreds of millions of predictions per
second. We delved into both the offline and online components of
our system. In the offline phase, we covered the complete workflow,
including model architecture, enhancements to system warm-up
processes, and bandwidth optimization strategies. Within the on-
line phase, we describe two novel modifications to the inference
layer that have yielded significant speed improvements. Our main
17https://github.com/outbrain/fwumious_wabbit/blob/main/src/quantization.rs

algorithms, concepts, and performance benchmarks were discussed
in detail, open-source implementations of key components were
made freely available. The implementation is extensible to other
FFM-based variants. As further work, on the inference side, imple-
menting quantization techniques could accelerate the forward pass
by using integer-based operations [8]. Improved weight sharing
and memory mapping could offer training improvements.

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] H. Bai, L. Hou, L. Shang, X. Jiang, I. King, and M. R. Lyu. Towards efficient
post-training quantization of pre-trained language models. Advances in Neural
Information Processing Systems, 35:1405–1418, 2022.

[3] A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off.
arXiv:1802.04064v3 [stat.ML], Dec. 2018.

[4] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel,
J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of basic
linear algebra subprograms (blas). ACM Transactions on Mathematical Software,
28(2):135–151, 2002.

[5] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, et al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 7–10, 2016.

[6] Y. Deldjoo, M. Schedl, P. Cremonesi, and G. Pasi. Recommender systems leverag-
ing multimedia content. ACM Computing Surveys (CSUR), 53(5):1–38, 2020.

[7] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-machine based
neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2704–2713, 2018.

[9] Y. Juan, D. Lefortier, and O. Chapelle. Field-aware factorization machines in a
real-world online advertising system. In Proceedings of the 26th International
Conference on World Wide Web Companion, pages 680–688, 2017.

[10] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines
for ctr prediction. In Proceedings of the 10th ACM conference on recommender
systems, pages 43–50, 2016.

[11] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. xdeepfm: Combining
explicit and implicit feature interactions for recommender systems. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 1754–1763, 2018.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[13] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!: A lock-free approach to paral-
lelizing stochastic gradient descent. Advances in neural information processing
systems, 24, 2011.

[14] B. Rokh, A. Azarpeyvand, and A. Khanteymoori. A comprehensive survey on
model quantization for deep neural networks. arXiv preprint arXiv:2205.07877,
2022.

[15] W. Shen. Deepctr: Easy-to-use,modular and extendible package of deep-learning
based ctr models. https://github.com/shenweichen/deepctr, 2017.

[16] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu,M. Zhang, and J. Tang. Autoint: Automatic
feature interaction learning via self-attentive neural networks. In Proceedings of
the 28th ACM international conference on information and knowledge management,
pages 1161–1170, 2019.

[17] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi. Dcn v2:
Improved deep & cross network and practical lessons for web-scale learning to
rank systems. In Proceedings of the web conference 2021, pages 1785–1797, 2021.

[18] J. Zhang, K. Bao, Y. Zhang, W. Wang, F. Feng, and X. He. Is chatgpt fair for
recommendation? evaluating fairness in large language model recommendation.
In Proceedings of the 17th ACM Conference on Recommender Systems, pages 993–
999, 2023.

[19] S. Zhang, Y. Tay, L. Yao, A. Sun, and C. Zhang. Deep learning for recommender
systems. In Recommender Systems Handbook, pages 173–210. Springer, 2021.

https://github.com/outbrain/fwumious_wabbit/blob/main/src/quantization.rs
https://github.com/shenweichen/deepctr

	Abstract
	1 Introduction
	2 Fwumious Wabbit (FW) - an overview
	2.1 Origins of FW and Vowpal Wabbit (VW)
	2.2 Criteo, Avazu and KDD2012 - a benchmark and stability analysis

	3 FW in practice: Service Architecture overview
	4 Model training improvements
	4.1 Speeding up model warm-up phase
	4.2 Hogwild-based training
	4.3 Sparse weight updates

	5 Model serving improvements
	6 Storage and transfer optimization
	7 Conclusions and open problems
	References

