
RankTower: A Synergistic Framework for Enhancing Two-Tower
Pre-Ranking Model

YaChen Yan
yachen.yan@creditkarma.com

Credit Karma
San Francisco, California, USA

Liubo Li
liubo.li@creditkarma.com

Credit Karma
San Francisco, California, USA

ABSTRACT
In large-scale ranking systems, cascading architectures have been
widely adopted to achieve a balance between efficiency and effec-
tiveness. The pre-ranking module selects candidates for the subse-
quent ranking module, while maintaining efficiency and accuracy
under online latency constraints. In this paper, we propose a novel
neural network architecture called RankTower, which is designed to
efficiently capture user-item interactions while following the user-
item decoupling paradigm to ensure online inference efficiency.
The proposed approach employs a hybrid training objective that
learns from samples obtained from the full stage of the cascade
ranking system, optimizing different objectives for varying sample
spaces. This strategy enhances the pre-ranking model’s ranking
capability and alignment with the existing cascade ranking system.
Experimental results conducted on public datasets demonstrate that
RankTower significantly outperforms state-of-the-art pre-ranking
models.

CCS CONCEPTS
• Computing methodologies; •Machine learning; •Machine
learning approaches; • Neural networks;

KEYWORDS
Recommender Systems, Pre-Ranking, Learning to Rank, Differen-
tiable Sorting
ACM Reference Format:
YaChen Yan and Liubo Li. 2023. RankTower: A Synergistic Framework for
Enhancing Two-Tower Pre-Ranking Model. In Proceedings of Make sure to
enter the correct conference title from your rights confirmation emai (Con-
ference acronym ’XX). ACM, New York, NY, USA, 6 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
In industrial information services, such as recommender systems,
search engines, and advertisement systems, the cascading archi-
tecture ranking system has been widely used to achieve a balance
between efficiency and effectiveness. A typical cascade ranking
system, as illustrated in Figure 1, consists of multiple sequential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Item
Corpus

Recall Pre-Ranking Ranking Re-Ranking

Item 1

Item 2

Item 3

Figure 1: The Architecture of Cascade Ranking System

stages, including recall, pre-ranking, ranking, and re-ranking stages.
Pre-ranking is commonly regarded as a lightweight ranking mod-
ule characterized by a simpler network architecture and a reduced
set of features. Compared to ranking models, pre-ranking models
are required to score a larger number of candidate items for each
user and demonstrate higher inference efficiency. Given the empha-
sis on efficiency, pre-ranking typically employs a straightforward
vector-product-based model.

We propose a novel pre-ranking framework called RankTower to
address these challenges. The primary contributions are as follows:

• We introduce the RankTower architecture, which comprises
three key components: Multi-Head Gated Network, Gated
Cross-Attention Network, and Maximum Similarity Layer.
This architecture efficiently captures user-item interactions
while following the user-item decoupling paradigm to ensure
online inference efficiency.

• We employ a full-stage sampling strategy by drawing the
training samples from different stages of the cascade ranking
system. Tightly coupled with this sampling approach, we
strategically integrate a hybrid loss function that combines
distillation and learning-to-rank losses. This synergistic ap-
proach facilitates comprehensive learning of the ordering
dynamics underlying user interactions while aligning with
the inherent patterns of the cascade ranking system.

• Experiments on public datasets demonstrate that RankTower
significantly outperforms state-of-the-art pre-ranking mod-
els in terms of prediction accuracy and inference efficiency.

2 MODEL ARCHITECTURE
The RankTower architecture, as shown in Figure 2, introduces three
main modules: Multi-Head Gated Network for computing diversi-
fied user and item representations, Gated Cross-Attention Network
for modeling bi-directional user-item interactions, and Maximum
Similarity Layer for efficiently capturing user-item interactions to
compute the final prediction.

RankTower follows the user-item decoupling paradigm, enabling
efficient online serving by pre-computing and caching user and item
embeddings. During online serving, only the gated cross-attention

https://orcid.org/0000-0002-1213-4343
https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY YaChen and LiuBo

User Tower

Embedding Layer

Item Tower

Embedding Layer

Gated Cross-Attention
Network

Multi-Head Gated
Network

Multi-Head Gated
Network

Item
Multi-Embedding

Maximum Similarity Layer

Vector
Database

Online Serving

User
Multi-Embedding

Figure 2: The Architecture of RankTower

layers require forward propagation, while other operations remain
parameter-free, optimizing computational efficiency.

2.1 Preliminary
The dataset for building the pre-ranking model consists of instances
(𝑥𝑢 , 𝑥𝑖 , 𝑦, 𝑝), where 𝑥𝑢 and 𝑥𝑖 are the user feature and item feature
respectively, 𝑋𝑈 and 𝑋𝐼 are the user and item input embeddings
obtained by concatenating respective feature embedding vectors,
𝑦 ∈ {0, 1} indicates the user-item binary feedback label, 𝑝 is the
logged ranking model prediction that for knowledge distillation. 𝑧
and 𝑦 denote the pre-ranking model’s logit and prediction.

2.2 Multi-Head Gated Network
The Multi-Head Gated Network is an enhanced MLP augmented
with a gating mechanism for extracting diverse user and item rep-
resentations. The MLP output is multiplied by an instance-aware
gating vector, modeled by a two-layer MLP. The input embedding
does not receive gradients from the gating network during training
for stability. For example, given an user input embedding 𝑋𝑈 , the
ℎ-th sub-space 𝑒ℎ𝑢 of the user multi-embedding is:

𝑒ℎ𝑢 = 𝑀𝐿𝑃𝑢 (𝑋𝑈)ℎ ◦ 𝜎 (𝑔𝑀𝐿𝑃𝑢 (𝑋𝑈))ℎ

∈ R𝐵×𝑘 , ℎ = 1, · · · , 𝐻𝑢
(1)

where ◦ denotes the Hadamard product, 𝜎 denotes the activation
function of the gating network: Sigmoid(𝑥),𝑀𝐿𝑃𝑢 denotes theMLP
layer for modeling the user input embedding, 𝑔𝑀𝐿𝑃𝑢 denotes the
gating MLP for facilitating selective attention, 𝐵 is the batch size
and 𝑘 is the embedding size of each sub-space.

Similarly, for item input embedding 𝑋𝐼 , the ℎ-th sub-space 𝑒ℎ
𝑖
of

the item multi-embedding is:

𝑒ℎ𝑖 = 𝑀𝐿𝑃𝑖 (𝑋𝐼)ℎ ◦ 𝜎 (𝑔𝑀𝐿𝑃𝑖 (𝑋𝐼))ℎ

∈ R𝐵×𝑘 , ℎ = 1, · · · , 𝐻𝑖
(2)

User
Multi-Embedding

Item
Multi-Embedding

Gated Attention
Unit

Q KV

Gated Attention
Unit

Q KV

Add & LayerNorm Add & LayerNorm

Figure 3: The Architecture of Gated Cross-Attention Network

In the offline processing stage, we will periodically batch infer-
ence and store all the user/item’s embeddings 𝑒ℎ𝑢 and 𝑒ℎ

𝑖
into the

vector database for online serving usage.

2.3 Gated Cross-Attention Network
The Gated Cross-Attention Network employs the cross-attention
mechanism to effectively model the interaction between user em-
bedding and item embedding. It utilizes the Gated Attention Unit
as the main building block, along with residual connections and
layer normalization for training stability.

2.3.1 Cross Attention Mechanism. The Bi-Directional Gated Cross-
Attention Network interchangeably utilizes user and item embed-
ding as queries and keys-values for bi-directional attention. Specifi-
cally, with the user multi-embedding 𝐸𝑢 = Concat(e1u, ..., 𝑒

𝐻𝑢
𝑢) and

item multi-embedding 𝐸𝑖 = Concat(e1i , ..., 𝑒
𝐻𝑖

𝑖
), the cross-attention

compute the user attended embedding E𝑢 and item attended em-
bedding E𝑖 as follows:

E𝑢 = LN(𝐸𝑢 + GAU(𝑄 = 𝐸𝑢 , 𝐾 = 𝐸𝑖 ,𝑉 = 𝐸𝑖)) ∈ R𝐵×𝐻𝑢×𝑘 (3)

E𝑖 = LN(𝐸𝑖 + GAU(𝑄 = 𝐸𝑖 , 𝐾 = 𝐸𝑢 ,𝑉 = 𝐸𝑢)) ∈ R𝐵×𝐻𝑖×𝑘 (4)

The cross-attention mechanism with two parallel branches is de-
signed to simultaneously attend to both user preferences and item
characteristics. This bidirectional approach allows the model to cap-
ture user-item interactions more accurately. The overall structure
of the Gated Cross-Attention Network is illustrated in Figure 3.

2.3.2 Gated Attention Unit. The Gated Attention Unit introduces
a gating mechanism to facilitate selective attention for better learn-
ing the dependency between user embedding and item embedding.
Specifically, the Gated Attention Unit effectively enables an atten-
tive gating mechanism as follows:

𝑄 = 𝜙 (𝑋𝑄𝑊𝑄), 𝐾 = 𝜙 (𝑋𝐾𝑊𝐾)
𝑉 = 𝜙 (𝑋𝑉𝑊𝑉),𝑈 = 𝜎 (𝑋𝑄𝑊𝑈)

(5)

RankTower: A Synergistic Framework for Enhancing Two-Tower Pre-Ranking Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

where 𝑋𝑄 , 𝑋𝐾 , 𝑋𝑉 are the query, key, and value input, 𝜙 is the
non-linear activation function for projection layer, 𝜎 is the sigmoid
function for computing gating value. With the learned projection
𝑄 , 𝐾 ,𝑉 , and the gating value𝑈 , we compute the attention weights,
followed by gating and a post-attention projection.

𝑂 = (𝑈 ⊙ 𝐴𝑉)𝑊𝑜 (6)

𝐴 = softmax(𝑄𝐾
𝑇√︁
𝑑𝑘

) (7)

where𝐴 ∈ R𝐻𝑢×𝐻𝑖 contains user to item attention weights. This
example assumes that we use user embedding as the query, and
item embedding as key and value.

2.4 Maximum Similarity Layer
The Maximum Similarity Layer computes the final probability pre-
diction based on the user and item attended embeddings. Specifi-
cally, each user sub-space computes the maximum cosine similarity
with all item sub-spaces, and the scalar outputs are summed across
user sub-spaces:

𝑠 = (
𝐻𝑢∑︁
𝑝=1

Max
𝑞∈{1,· · · ,𝐻𝑖 }

𝐶𝑂𝑆𝐼𝑁𝐸 (E𝑝𝑢 , E
𝑞

𝑖
))/𝜏 (8)

where 𝑝 and 𝑞 are the sub-space indexes of user-attended em-
bedding and item-attended embedding, respectively, and 𝜏 is the
learnable temperature scalar for re-scaling the cosine similarity.
Note that the Maximum Similarity Layer does not have any param-
eters which is suitable for online serving.

3 PRE-RANKING MODEL OPTIMIZATION
The pre-ranking models trained exclusively on impression samples,
same as ranking models, suffer from sample selection bias. The
pre-ranking model, which operates on the outputs of recall models,
aims to identify the most relevant candidates set for the ranking
model. Consequently, aligning the item distribution between the
training and serving phases is essential to mitigate this sample
selection bias and improve model effectiveness.

As illustrated in Figure 4, we implemented full-stage sampling
to draw training data from impression samples, candidate samples,
and random samples to mitigate sample selection bias. Moreover,
we strategically applied various distillation and learning-to-rank
losses to different sample scopes to effectively learn the ordering
of user behaviors and the sequencing of the sample stages.

3.1 Full-Stage Sampling
The RankTower model is trained using user-level listwise samples
containing multiple positive items and multiple objectives. The
training samples for each user are sourced from various stages of the
cascade ranking system, as shown in Figure 1. Detailed definitions
and relationships among these components are provided below:

3.1.1 Impression Samples. The items output by the ranking model
and viewed by the user consist of both positive and negative sam-
ples. Positive samples are items that have received various types of

positive user feedback, while negative samples are items that have
been exposed to the user without receiving user feedback.

3.1.2 Candidate Samples. The item candidates in the ranking or
pre-ranking stages that are not viewed by the user are categorized
based on their progression through the cascade ranking pipeline.
Ranking candidates, which have advanced to the ranking stage, are
generally considered as hard negative samples due to their higher
relevance and quality compared to the pre-ranking candidates. Pre-
ranking candidates are regarded as relatively easy negative samples
because they were filtered out before reaching the ranking stage.

3.1.3 Random Samples. Items that are randomly sampled from the
item corpus to serve as negative samples. These random samples are
considered the easiest negative samples but are included to further
enhance the generalization capability of the pre-ranking model. The
incorporation of random samples ensures that the model remains
effective and adaptable when encountering previously unseen items
during the serving phase, thereby improving its robustness and
ability to handle diverse item distributions.

3.2 Label Aggregation
Our framework incorporates two types of labels: hard labels and soft
labels. Hard labels represent various types of positive user feedback
on impression samples, while soft labels are predictions made by
the ranking models, used knowledge distillation. Both categories of
labels require an aggregation function to consolidate the different
user behaviors into a single scalar value for the pre-ranking model’s
learning.

3.2.1 Hard Labels. The aggregation of hard labels is highly de-
pendent on the specific business problem, requiring that labels be
aggregated according to their orders of importance.

For instance, in online advertising, eCPM can be utilized based
on the pricing model of the platform. In an e-commerce context,
one might establish a relative preference order based on the depth
of user feedback, such as Purchase > Add to Cart > Click. For sce-
narios like feed ranking or video recommendations, user feedback
signals can be aggregated using a weighted sum approach. Addi-
tionally, we incorporate a general impression label applicable across
business scenarios, for learning the pattern of the cascade ranking
system. The label assigned a value of 1 for impression samples and
0 otherwise.

The user feedback labels help the pre-ranking model in learning
the revenue or engagement level associated with different user
behaviors. The exposure label facilitates the pre-ranking model’s
ability to learn and replicate the ranking patterns in the downstream
cascade ranking system.

3.2.2 Soft Labels. For soft labels, we use the ranking objective
function as aggregation function. This approach ensures that the
soft labels are seamlessly integrated into the training process, main-
taining the consistency between the pre-ranking model and the
ranking model.

3.3 Hybrid Loss Functions
The pre-ranking model focuses on achieving both consistency and
ranking accuracy through the following techniques:

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY YaChen and LiuBo

Item 1 Item N...User Item N+1 Item N+M Item N+M+1 Item N+M+L... ...

Pre-Ranking Model

Distillation Loss
Fine-Grained
Ranking Loss

Coarse-Grained
Ranking Loss

Impression
Samples

Candidate
Samples

Random
Samples

...

Figure 4: The Synergistic Framework for Learning User Behavior Ordering and Full-Stage Sample Ordering

• Knowledge Distillation: The ranking model’s predictions are
used as soft labels to transfer knowledge from the ranking
model (teacher) to the pre-ranking model (student).

• Ranking Capability: Fine-grained and coarse-grained rank-
ing losses are applied to improve ranking performance and
retrieval capability, respectively.

• Diverse Training Samples: The model is trained on samples
from different stages and varying easy/hard sample levels
to achieve robust generalization and optimize hierarchical
objectives.

Our synergistic framework is designed to learn both the hier-
archy of user behaviors and the pattern of the cascade ranking
system. For instance, in the context of online advertising, the model
is expected to understand the following order of importance: con-
verted items > clicked items > exposed items > candidate items and
randomly sampled items.

3.3.1 Distillation Loss. As the main goal for the pre-ranking model
is to output a high-quality item set for the ranking model, hence we
used a listwise loss for distilling the knowledge from the ranking
model as follows:

LDistillation (𝑧, 𝑝) = −
∑︁
𝑖∈D𝐼

𝑝𝑖 log
exp(𝑧𝑖)∑

𝑗∈D𝐼
exp(𝑧 𝑗)

(9)

where 𝑝 is the prediction of the ranking model (soft label), 𝑧 is
the logit of the pre-ranking model, DI is the impression samples
set. Note the distillation process from the ranking model to the
pre-ranking model is conducted exclusively on impression samples.
As the ranking model is trained solely on these impression samples,
its ability to generalize to candidate samples and random samples
is inherently limited.

3.3.2 Fine-Grained Ranking Loss. The fine-grained ranking loss is
applied to both impression and candidate samples, which directly
correspond to the sample scope used in serving. We employ the

SoftSort, a differentiable sorting loss, to learn user behavior and
the patterns of the cascade ranking system. This loss function aims
to precisely rank items according to the varying degrees of positive
feedback they receive and effectively differentiate positives from
impression samples and negatives from candidate samples.

Consider the SoftSort operator defined by metric function d =

| · |𝑝 and temperature parameter 𝜏 for sorting 𝑛-dimensional real
vectors 𝑠 ∈ R𝑛 :

SoftSort𝑑𝜏 (𝑠) = softmax(−d(𝑠𝑜𝑟𝑡 (𝑠)1
𝑇 , 1𝑠𝑇)

𝜏
) (10)

The output of SoftSort operator is a permutationmatrix of dimen-
sion 𝑛. The softmax operator is applied row-wise, thereby relaxing
the permutation matrices into a set of unimodal row-stochastic
matrices. In simple words: the 𝑟 -th row of the SoftSort operator is the
softmax of the negative distances to the 𝑟 -th largest element [5]. We
then employ the softmax cross entropy between the permutation
matrices of label 𝑦 and the permutation matrices of logit 𝑧. The
SoftSort loss function is hereby defined as:

LSorting (𝑧,𝑦) = −tr
(
J𝑛
(
SoftSort𝑑𝜏 (𝑦) ◦ log SoftSort𝑑𝜏 (𝑧)

))
(11)

where J𝑛 is a 𝑛 × 𝑛 matrix of ones, y = (𝑦𝑖)𝑖∈DI∪DC is the
hard label and z = (𝑧𝑖)𝑖∈DI∪DC is the logit of the pre-ranking
model. We use the tr to compute the element sum of the matrix
SoftSort𝑑𝜏 (𝑦) ◦ log

(
SoftSort𝑑𝜏 (𝑧)

)
.

3.3.3 Coarse-Grained Ranking Loss. The coarse-grained ranking
loss, applied to all samples (impression, candidate, and random),
aims to separate positive and negative samples while supporting
ranking among positives by distinguishing varying degrees of rele-
vance. We propose the Adaptive Margin Rankmax (AM-Rankmax)
loss, an extension of the Rankmax loss [2] that introduces an adap-
tive margin based on the pair’s nature and label distance, thereby

RankTower: A Synergistic Framework for Enhancing Two-Tower Pre-Ranking Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

extending the Rankmax loss to address ranking problems with
ordered or continuous positive labels.

Consider the Rankmax loss for ranking problems with binary
labels only:

L𝑅𝑎𝑛𝑘𝑚𝑎𝑥 (𝑧,𝑦) =
∑︁
𝑗 :𝑦 𝑗>0

log
𝑛∑︁
𝑖=1

(
𝑧𝑖 − 𝑧 𝑗 + 1

)
+ (12)

The Rankmax loss is reminiscent of pairwise losses. To extend
the Rankmax loss to more general ranking problems involving
multi-level positive labels, we introduce the adaptive margin with
following enhancements:

• The loss is applied only when𝑦𝑖 < 𝑦 𝑗 , which is more suitable
for multi-level positive label scenario.

• The margin adjusts based on whether 𝑦𝑖 is positive or nega-
tive, to further enhancing the differentiality between positive
and negative samples.

• The margin scales with the label distances between samples,
reflecting varying degree of positive samples.

The adaptive margin function is:

𝑚(𝑖, 𝑗) = 𝛼 · I(𝑦𝑖 = 0) + 𝛿 (𝑦𝑖 , 𝑦 𝑗) (13)
where 𝛼 is a constant for adding additional margin between

negative and positive items, I is the indicator function. The metric
function 𝛿 can take various forms, for example 𝛿 (𝑦𝑖 , 𝑦 𝑗) = 1 or
𝛿 (𝑦𝑖 , 𝑦 𝑗) = 𝛽 |𝑦𝑖 − 𝑦 𝑗 |𝑝 . The adaptive margin Rankmax loss is then
given by:

𝐿AM−Rankmax (𝑧,𝑦) =
∑︁
𝑗 :𝑦 𝑗>0

log
∑︁

𝑖:𝑦𝑖<𝑦 𝑗

(
𝑧𝑖 − 𝑧 𝑗 +𝑚(𝑖, 𝑗)

)
+

(14)
where y = (𝑦𝑖)𝑖∈DI∪DC∪DR is the hard label from all the sam-

ples and z = (𝑧𝑖)𝑖∈DI∪DC∪DR is the logit of the pre-ranking model.
The AM-Rankmax loss function can effectively adapt to scenarios

with multiple positive labels of varying levels. This enhancement
allows the model to handle different degrees of positive feedback,
thereby improving its ability to generalize and accurately rank
items in complex settings.

3.3.4 The Hybrid Ranking Loss. We design a hybrid ranking loss
that integrates both distillation and ranking objectives. The hybrid
ranking loss is the weighted sum of three losses:

LHybrid (𝑧,𝑦) = 𝜆1LDistillation (𝑧, 𝑝)
+ 𝜆2LSorting (𝑧,𝑦)
+ 𝜆3LAM−Rankmax (𝑧,𝑦)

(15)

where 𝜆1, 𝜆2 and 𝜆3 are weights for each sub-objective. Balancing
distillation and ranking losses is crucial for the pre-ranking model
to inherit the ranking model’s capabilities while generalizing to
broader sample spaces. Weighting fine-grained and coarse-grained
ranking losses ensures a balance between precise ranking and over-
all retrieval robustness.

4 EXPERIMENTS
We conduct experiments on three large-scale public datasets from
online advertising, e-commerce, and short video recommendation

domains to evaluate the effectiveness of RankTower. The experi-
ments provide a comprehensive description of the evaluation met-
rics, and comparisons with state-of-the-art pre-ranking models. We
aim to answer the following questions through our experiments:

• Q1: How does our proposed RankTower perform for pre-
ranking task? Is it effective and efficient under extremely
high-dimensional and sparse data settings?

• Q2: How do different settings on dataset sampling and train-
ing losses influence the performance of RankTower?

4.1 Experiment Setup
4.1.1 Datasets. We evaluate our model using real-world datasets:
Alimama1, Taobao2, and KuaiRand3. For each dataset, we keep
users with at least 100 impressions and 20 instances of positive
feedback. The data is split into 70% for training, 10% for validation,
and 20% for testing. As all labels in the datasets are binary, we
aggregate them by summing the labels to form the hard label.

4.1.2 Evaluation Metrics. We consider Recall@K and NDCG@K
for evaluating the performance of the models, and we set 𝑘 to 100
for all experiment metrics.

Recall@K is the fraction of relevant retrieved within the top 𝐾
recommendations. It’s mainly used for measuring ranking system’s
capability on retrieving relevant items.

NDCG@K measures the quality of the ranking by considering
both the relevance and the position of items within the top 𝐾
recommendations. Items with higher relevance ranked at higher
position contribute more to the metric.

4.1.3 Competing Models. We compare RankTower with the fol-
lowing pre-ranking models: LR [4], Two-Tower [1], DAT [8], COLD
[7], IntTower [3] and ARF[6].

4.2 Model Performance Comparison (Q1)

Table 1: Performance Comparison of Different Algorithms
on Alimama , Taobao and KuaiRand Dataset.

Alimama Taobao KuaiRand
Model Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K
LR 0.4802 0.3237 0.4792 0.2685 0.6713 0.5027

Two-Tower 0.5123 0.3428 0.5019 0.2921 0.6902 0.5258
DAT 0.5161 0.3472 0.5089 0.3013 0.6955 0.5312
COLD 0.5210 0.3518 0.5123 0.3070 0.7011 0.5349

IntTower 0.5215 0.3519 0.5101 0.3051 0.6960 0.5309
ARF 0.5318 0.3655 0.5215 0.3117 0.7096 0.5497

RankTower 0.5462 0.3794 0.5301 0.3223 0.7182 0.5551

The overall performance of different model architectures is listed in
Table 1. We have the following observations for model effectiveness:
• LR exhibits the lowest performance compared to the other neural
network-based models.

• Two-Tower brings the most significant relative improvement
in performance, highlighting the importance of learning deep
feature interactions.

1https://tianchi.aliyun.com/dataset/408
2https://tianchi.aliyun.com/dataset/649
3https://kuairand.com/

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY YaChen and LiuBo

• COLD achieves strong performance among the competing mod-
els, indicating the significance of learning user-item feature in-
teractions.

• ARF outperform other models without utilizing listwise ranking
losses, highlighting the importance of using listwise ranking
losses.

• RankTower achieves the best prediction performance, attributed
to its effective modeling of bi-directional user-item feature in-
teractions and the design of full-stage sampling and hybrid loss
functions.

4.3 Model Study (Q2)
To gain deeper insights into the proposed model, we conduct exper-
iments on the KuaiRand dataset and compare model performance
on different settings, including: 1) the effect of full-stage data sam-
pling; 2) the effect of listwise ranking losses; and 3) the effect of
distillation from the ranking model.

4.3.1 Effect of Full-Stage Sampling. We conduct an ablation study
to evaluate the impact of each sampling component on the model’s
performance. As shown in Table 2, the full-stage sampling strategy
achieves the best overall performance. Training the pre-ranking
model solely with impression samples hinders its ability to general-
ize to unexposed items, negatively affecting retrieval performance.
We also observe that candidate samples are more important than
random samples, as they significantly enhance the model’s ability
to discriminate between relevant and non-relevant items.

Table 2: Experiment Results for Different Sampling Strate-
gies.

Recall@K NDCG@K
Full-Stage Sampling 0.7182 0.5551
w/o random samples 0.7125 0.5437
w/o candidate samples 0.7040 0.5401
w/o candidate & random samples 0.6981 0.5323

4.3.2 Effect of Listwise Ranking Losses. To better understand the
properties of the proposed hybrid loss, we compare it with sev-
eral widely used ranking losses in the industry. The experiment
results, as shown in Table 3, indicate that the hybrid loss consis-
tently outperforms other alternatives, surpassing both its individual
components: the Sorting loss and the AM-Rankmax loss. Moreover,
our proposed AM-Rankmax demonstrates superior performance
compared to the original Rankmax loss and the Softmax loss.

Table 3: Experiment Results for Different Ranking Losses.

Recall@K NDCG@K
Hybrid Loss 0.7182 0.5551
Sorting 0.7128 0.5516
AM-Rankmax 0.7132 0.5507
Rankmax 0.7105 0.5492
Softmax 0.7109 0.5498
ApproxNDCG 0.7006 0.5436
RankNet 0.7072 0.5452

4.3.3 Effect of Distillation from Ranking Model. We conduct an
ablation study on the distillation component and further compare
Softmax loss with other alternatives.

The Table 4 demonstrate the efficacy of transferring knowledge
distillation. Among various loss function experimented for distilla-
tion, the Softmax loss outperforms the other alternative losses. The
Softmax loss, being a listwise ranking loss, proved more adept at
distilling the ranking model’s capabilities compared to the weighted
logloss, which essentially is a pointwise approach and exhibited
suboptimal performance in learning the relative ranking distribu-
tion. In contrast, the pairwise logloss, focusing solely on pairwise
ordering of ranking model’s predictions without considering the rel-
ative proximity of predictions, exhibited overfitting to the ranking
model’s outputs.

Table 4: Experiment Results for Different Distillation Losses.

Recall@K NDCG@K
Distillation (Softmax) 0.7182 0.5551
Distillation (Weighted Logloss) 0.7130 0.5519
Distillation (Pairwise Logloss) 0.7071 0.5432
No Distillation 0.7108 0.5495

5 CONCLUSION
This paper introduces the RankTower model, designed to enhance
the performance of the two-tower model by effectively capturing
bi-directional latent interactions between user and item. To en-
sure consistency with existing casecade ranking system, a hybrid
loss function and full-stage sampling approach are integrated into
the model’s optimization framework. Comprehensive experiments
demonstrate that RankTower significantly outperforms state-of-
the-art pre-ranking models. In future work, we aim to study how
to effectively and jointly optimize the cascade ranking system in
an end-to-end fashion.

REFERENCES
[1] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.

2013. Learning deep structured semantic models for web search using clickthrough
data. In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management. 2333–2338.

[2] Weiwei Kong,Walid Krichene, NicolasMayoraz, Steffen Rendle, and Li Zhang. 2020.
Rankmax: An adaptive projection alternative to the softmax function. Advances
in Neural Information Processing Systems 33 (2020), 633–643.

[3] Xiangyang Li, Bo Chen, HuiFeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian
Li, YichaoWang,Wei Guo, Longxia Mao, et al. 2022. IntTower: the Next Generation
of Two-Tower Model for Pre-Ranking System. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 3292–3301.

[4] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.
2013. Ad click prediction: a view from the trenches. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1222–1230.

[5] Sebastian Prillo and Julian Eisenschlos. 2020. Softsort: A continuous relaxation
for the argsort operator. In International Conference on Machine Learning. PMLR,
7793–7802.

[6] Yunli Wang, ZhiqiangWang, Jian Yang, ShiyangWen, Dongying Kong, Han Li, and
Kun Gai. 2023. Adaptive Neural Ranking Framework: Toward Maximized Business
Goal for Cascade Ranking Systems. arXiv preprint arXiv:2310.10462 (2023).

[7] Zhe Wang, Liqin Zhao, Biye Jiang, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai.
2020. Cold: Towards the next generation of pre-ranking system. arXiv preprint
arXiv:2007.16122 (2020).

[8] Yantao Yu, Weipeng Wang, Zhoutian Feng, and Daiyue Xue. 2021. A Dual Aug-
mented Two-tower Model for Online Large-scale Recommendation. (2021).

	Abstract
	1 Introduction
	2 Model Architecture
	2.1 Preliminary
	2.2 Multi-Head Gated Network
	2.3 Gated Cross-Attention Network
	2.4 Maximum Similarity Layer

	3 Pre-Ranking Model Optimization
	3.1 Full-Stage Sampling
	3.2 Label Aggregation
	3.3 Hybrid Loss Functions

	4 Experiments
	4.1 Experiment Setup
	4.2 Model Performance Comparison (Q1)
	4.3 Model Study (Q2)

	5 Conclusion
	References

