# Large Language Models for Detecting Gambling Advertisement Images to Enhance the Efficiency of the Creative Review Process

Presented by:

Jayesh Santosh Asawa

## Challenges in Creative Review

- Multiple Advertising Policies (e.g.: No Gambling, No Adult, No Crypto etc).
- Current process relies on third-party APIs (e.g. Cloud Vision) for initial image filtering.
  - These APIs struggle with specialized policies e.g., 70% of gambling images marked safe.
- To uphold the brand integrity and maintain trust and ethical standards, manual reviews are most reliable.
  - The process slow, costly, and error-prone.

## Gambling Category

### Explored CNN-based Transfer Learning (VGG-16) and Vision Transformer (ViT):

Fine-tuned pre-trained models to classify gambling vs. non-gambling images.

### Experimented with LLM-based approaches:

Used LLAMA-Vision-11B with prompt engineering and LLM2Vec encoder for zero-shot and contextual classification improvements.

#### Ensemble Model:

 Combined outputs from CNN, ViT, and LLM2Vec using logistic regression for best performance.

### Comparative Analysis:

Evaluated all models on FNR, FPR, and F1-score.

## Dataset

- **Source:** Proprietary data from Samsung's SSP ad inventory logs. Covers casino games, real-money games, cryptocurrency gambling, lottery, and sweepstakes ads.
- Initial Size: 50K unique images, refined to 30K labeled images.
- Labeling: Binary classes: Gambling (4%) vs Non-Gambling (96%).
- Preprocessing: Standardized sizes (64x64, 128x128, 224x224).
- **Split:** Train (60%), Validation (20%), Test (20%).



Fig. 1. Sample Creative Ads images in Dataset with Labels of Gambling and Non Gambling.

## VGG-16 (CNN with Transfer Learning)

**Architecture:** 13 convolutional + 3 fully connected layers (16 total), uses 3x3 filters for fine-grained details.

**Pre-training:** Trained on ImageNet, leveraged for gambling image classification via **transfer learning**.

### Tuning:

- Replaced final layer with 2-class output (Gambling / Non-Gambling).
- Used Adam optimizer, small learning rate (0.0001).
- Class Imbalance Handling: Applied class weights (1:40) for gambling vs non-gambling.

### **Training:**

- Started with frozen convolutional layers, experimented with partial fine-tuning.
- Input sizes: 64x64, 128x128, 224x224 tested.
- Validation accuracy plateaued after ~40 epochs.
- Evaluated using FNR, FPR, and F1-score.

## Vision Transformer (ViT)

#### **Architecture:**

- Treats image as a sequence of patches of size 16x16, uses self-attention for global context.
  - o Patches, Linear embedding + positional encoding, Transformer encoder.
- Captures global image context through self-attention, unlike CNNs that focus on localized features.

### Adaptation:

- Fine-tuned pre-trained ViT model on gambling dataset.
- Trained for 100 epochs; validation accuracy plateaued after ~20 epochs.

#### Performance:

- Metrics (Precision, Recall, F1-score) comparable to VGG-16.
- Observed overfitting beyond 20 epochs.

Advantage: Handles varied image contexts effectively using global attention.

## Using LLMs - Approach 1

#### **Process:**

- Used LLAMA Vision 11B model, got some prompt engineering ideas with the help of Deepseek-R1 to identify gambling related items in the image.
- Input: Image for classification + Prompt
- Model outputs structured JSON (Gambling = 1, Not Gambling = 0).

#### Results:

False Positives: 19.21%False Negatives: 8.47%

#### **Observation:**

 LLM performed poorly for pure discriminative / classification tasks for our use case compared to CNN and ViT.

## LLM Approach 2

### Steps:

- Used Manual Review + DeepSeek-R1 to create prompts.
- Extracted image descriptions using
  Vision LLM, fed into LLM2Vec encoder
  for contextual embeddings.
- Trained Logistic Regression (SAGA solver, balanced class weights) on encoded vectors.

### Advantages:

- Captures textual patterns describing gambling cues.
- Significant performance improvement over Approach 1 and baseline models (VGG16, ViT).



Fig. 2. Approach 2 For LLM2Vec based classification

#### LLAMA Vision 11B Prompt:

Analyze this image and list all observable elements that could suggest it is related to risk-for-reward mechanics, monetary wagers, or casino-style activities. If absent, list elements that suggest generic advertising, entertainment, or other purposes.

Focus only on these categories: Monetary/Financial Elements: Casino chips, coins, banknotes, piles of cashCurrency symbols (\$, €, ¥), free spins" or "bonus" text. Prize amounts, jackpot displays, "win" or "wager" in text

Game Mechanics: Playing cards, dice, roulette wheels, slot machines. Poker tables, numbered balls (e.g., lottery), sports odds. Progress bars, "level up" indicators, timer countdowns

Ad/Creative Elements (if no gambling cues): Brand logos, app store badges, celebrity endorsements Neutral graphics (e.g., landscapes, abstract art) Call-to-action text ("Download Now," "Try Free")

#### Rules:

Only list items verbatim (e.g., "red poker chips," "\$100 bill," "slot machine animation"). No summaries (avoid phrases like "this is gambling-related"). No assumptions—only include visible/textual elements.

#### Example Output:

Three golden casino chips stacked

Text: "Daily Bonus: 500 Coins" Green felt table with card symbols (:spades::hearts::diamonds::clubs:) Spin-the-wheel animation in background

### Fig. 3. LLAMA Vision 11B Prompt

#### Instruction Prompt:





#### Response:

Based on the presence of the words ""Rewards"" and the wheel of fortune, the image appears to be advertising a gambling game for older aged people. The presence of gold coins at the bottom of the image adds to the suspicion that this is a gambling game for older players. The image is likely designed to entice mature players by describing the rewards they will receive after accumulating certain amounts of coins. The presence of a balloon and a gift box further reinforces this idea.

Fig. 5. Sample Gambling Image

## **Ensemble Model**

We combined the output propensities got from the VGG16, ViT and LLM2Vec model outputs and applied min-max normalization over the propensities and then trained a logistic regression classifier on them. This technique further improved the results.



# Results

| Model                                  | Dataset | FPR (%) | FNR (%) | F1-Score |  |  |  |
|----------------------------------------|---------|---------|---------|----------|--|--|--|
| VGG16                                  | Test    | 2.32    | 12.16   | 0.8208   |  |  |  |
|                                        | Val     | 2.06    | 12.31   | 0.8388   |  |  |  |
| ViT                                    | Test    | 3.22    | 12.72   | 0.7342   |  |  |  |
|                                        | Val     | 3.55    | 12.56   | 0.7148   |  |  |  |
| LLM2Vec                                | Test    | 1.98    | 11.68   | 0.8516   |  |  |  |
| (Approach 2)                           | Val     | 1.83    | 11.91   | 0.8414   |  |  |  |
| Ensemble                               | Test    | 1.59    | 11.02   | 0.8806   |  |  |  |
|                                        | Val     | 1.57    | 10.97   | 0.8923   |  |  |  |
| Table 1: Results from different models |         |         |         |          |  |  |  |

## Conclusion

- The manual review team need not spend time on 91% of images predicted as "Not gambling" and 4% of the images predicted as "Gambling".
- Our model, therefore, saves 95% of the time and effort with only 5.36% of gambling images (i.e. 17 gambling misclassified out of (17+59+241=317)) and 0.61% of non-gambling images misclassified.

| Predicted Group | Actual 0 | Actual 1 | % Miss | % of Total |
|-----------------|----------|----------|--------|------------|
| Not Gambling    | 6,061    | 17       | 0.61%  | 91%        |
| Manual Check    | 234      | 59       | -      | 4%         |
| Gambling        | 39       | 241      | 5.36%  | 4%         |

Table 2: Final Results of Validation Set with Manual Review

## Thank You

You can reach out to us at:

- Jayesh Santosh Asawa (jayesh.asawa@samsung.com, jayeshasawa1@gmail.com)
- Edward L Martis (<u>e.martis@samsung.com</u>)