

DCN^2: Interplay of Implicit Collision Weights and Explicit Cross Layers for Large-Scale Recommendation

Blaž Škrlj, Yonatan Karni, Grega Gašperšič, Blaž Mramor, Yulia Stolin, Martin Jakomin, Jasna Urbančič, Yuval Dishi, Natalia Silberstein, Ophir Friedler, Assaf Klein

Teads

DCN²

- Motivation and overview
- 2. Architecture improvements
- 3. Offline evaluation
- 4. Online evaluation
- 5. Scaling and productization

Motivation

- 1. Building reliable CTR/CVR models at scale is a challenging task
 - a. Models operate on streams of data
 - b. Item collisions can lead to performance decay
 - c. Item interactions of **different order** contribute to final prediction
- 2. Existing **DCNv2** addresses many, yet not all of these challenges
- 3. We systematically investigated possible **improvements** at different levels of the architecture, and deployed the result at scale

Architecture

Architecture

Collision-Weighted Layer Mechanism Problem: Hashing collisions make different items look the same. **Embedding Table** Item A Hashing Item B

Architecture - collision weights

Step0:
$$\mathbf{X}_{ec} = \begin{cases} \mathbf{X}[:,1:d] = \mathbf{X}[:,1:d]; -\omega \leq \mathcal{N}(\mu,\sigma^2) \leq \omega, \\ \mathbf{X}[:,d+1] = \mathbb{1} \end{cases}$$

Step1:
$$X_{inp} = X_{ec}[:, \ldots d] \odot X_{ec}[:, d+1]$$

Addressed aspect: Resilience to collisions

Collision weight values, visualized

Architecture - onlydense layer

DCNv2 (Wang et al.)

Addressed aspect: Info loss in Cross

$$x_t = \alpha(\mathbf{W} \cdot \mathbf{x} + b_0)$$
$$x_r = x_t \odot \mathbf{x} \cdot \phi.$$

This work

Architecture - similarity "kernel"

Benchmarks - offline

	Criteo										
Algorithm	avg	median	max	min	std	Algorithm	avg	median	max	min	std
FM deepFM DCNv2 DCN ² DCN ² -simk	0.7748 0.7812 0.7826 0.7846 0.7824	0.7746 0.7814 0.7832 0.7846 0.7826	0.8304 0.8350 0.8351 0.8387 0.8354	0.7237 0.7230 0.7244 0.7284 0.7242	0.0180 0.0183 0.0183 0.0183 0.0183	FM deepFM DCNv2 DCN ² DCN ² -simk	0.7834 0.7906 0.7922 0.7933 0.7922	0.7831 0.7904 0.7918 0.7930 0.7919	0.8166 0.8214 0.8229 0.8231 0.8233	0.7617 0.7716 0.7730 0.7751 0.7738	0.0064 0.0063 0.0063 0.0063 0.0063
KDD2012						iPinYou					
Algorithm	avg	median	max	min	std	Algorithm	avg	median	max	min	std
FM deepFM DCNv2 DCN ² DCN ² -simk	0.7547 0.7719 0.7730 0.7747 0.7733	0.7545 0.7677 0.7684 0.7699 0.7693	0.8336 0.8709 0.8731 0.8735 0.8761	0.6769 0.7058 0.7133 0.7051 0.7105	0.0201 0.0260 0.0265 0.0272 0.0266	FM deepFM DCNv2 DCN ² DCN ² -simk	0.7521 0.7669 0.7659 0.7561 0.7467	0.7572 0.7683 0.7667 0.7615 0.7518	0.9955 0.9961 0.9975 0.9984 0.9980	0.3638 0.4275 0.4333 0.3574 0.4181	0.1049 0.0997 0.1001 0.1023 0.1043

More collisions -> superior performance

Taking it Online

Use case	Lift Offline (AutoML)	Lift Online (A/B)
CTR	0.0035 (RIG)	3.2% RPM
CVR	0.0010 (RIG)	4.2% swCR, 0.37% GR

Scaling DCN²

- Modernized Inference Stack: Migrated the model to standard TensorFlow/ONNX, achieving peak performance with stock binaries after targeted kernel and graph optimizations
- Optimized Execution: Implemented a novel "local fan-out" batching strategy and optimized thread management, which cut p99 latency by 18%
- Final Performance: Increased throughput 1.6x via memory optimization (e.g., Jemalloc), delivering over 0.5 billion predictions per second within strict latency limits

Conclusions

We introduced **DCN^2**, an improvement over DCNv2 that addresses issues with:

- Item collisions
- 2. Information loss in Cross layers
- 3. Pairwise interactions being considered

Further work:

- 1. Can we use multiple embedding tables with different weight vectors?
- 2. Policy for explicit modulation of collision weights outside the model
- 3. Impact of hard resets at weight level to keep models fresh