Hierarchical Group-wise Ranking Framework for Recommendation Models

YaChen Yan, Liubo Li, Ravi Choudhary

July 31, 2025

Summary

- Introduction
 - Background
 - Motivation
- Modeling Framework
 - Hierarchical Group-wise Negative Sampling
 - Model Architecture and Training
- 3 Experiment
- Summary

Background

- CTR/CVR models can achieve improved performance by incorporating ranking objectives beyond calibration objectives.
 - Calibration Objective: Pointwise LogLoss
 - Ranking Objective: Pairwise/Listwise Ranking Loss
 - Hybrid Objective: Combining calibration loss with ranking loss

$$L = \alpha L_{\text{calibration}} + (1 - \alpha) L_{\text{ranking}}$$

- Context-aware Data Sampling:
 - Ranking loss is applied over item lists grouped by:
 - Recommendation request
 - Search query
 - User session

Background Cont.

- Existing research efforts mainly focused on the formulation and optimization of ranking loss function: RankNet, ListNet, Calibrated Softmax, JRC, ListCE.
- Recent work¹ demonstrates that incorporating ranking loss generates larger gradients for negative samples, thereby alleviating the gradient vanishing issue commonly observed when optimizing solely with pointwise logloss.

¹Wu et al., Understanding the Ranking Loss for Recommendation with Sparse User Feedback. KDD 2024

Motivation

Problems:

- Context-aware data sampling violates global data shuffling, potentially degrading model performance.
- Severe sample and label sparsity at the context level, particularly in CVR prediction tasks.

Solution:

- Design a **cross-context data sampling** strategy to preserve global data shuffling and enrich ranking signal.
- Conduct controllable hard negative sampling based on gradient magnitude to reduce gradient variance and accelerate convergence.

Hierarchical Group-wise Negative Sampling

Intuition:

- Similar users tend to:
 - Be exposed to similar items
 - Share common interests
- These users can provide more informative negatives for each other

• Key Idea:

- Cluster users using Residual Vector Quantization (RVQ)
 - Can be co-updated with ranking model in streaming settings
 - Better clustering quality with hierarchical structure
- Group user-item pairs based on the learned hierarchical user clusters
- Applying listwise ranking loss
 - On each user-item interaction groups
 - Across each hierarchical cluster levels

Residual Vector Quantization

Figure: Recursive multi-level vector quantization

- Quantized User Embeddings: Discrete, semantic embeddings for similar user groups.
- **Hierarchical User Codes:** Trie-like structure; shared prefixes indicate user similarity.

Training of Residual Vector Quantizer

Objective:

- Hierarchical codes capturing user similarity semantics
- Adaptive clustering responsive to evolving user interests
- Modified Loss Formulation (compared to VQ-VAE):
 - ullet Reconstruction Loss o Auxiliary Calibration Loss
 - Applies logloss on auxiliary predictions (\hat{y}^q) computed from \mathbf{e}_u^q , $\operatorname{sg}(\mathbf{e}_i)$.
 - Promotes task-relevant semantics in the codebook space.
 - Facilitates adaptation to evolving user interests.
 - Codebook Loss \rightarrow EMA Update
 - Enables smooth, streaming-friendly codebook update.
 - Improves codebook utilization.
 - Commitment Loss → Omitted
 - Limits embedding flexibility and dynamic cluster transitions.
 - Omission enables real-time adaptation to shifting user interests.

Visualization: Hierarchical Group-wise Negative Sampling

Figure: Hierarchical sampling is performed over multi-level nested user clusters. Items from similar users are grouped to create enriched sample lists.

- Samples are drawn from different cluster depths in RVQ hierarchy.
 - Shallow: easier negatives (coarse-grained clusters)
 - Deep: harder negatives (fine-grained clusters)
- Listwise Cross-Entropy loss is applied
 - On each user-item interaction groups
 - Across each hierarchical cluster levels

Model Architecture

Figure: Model architecture with RVQ and Hierarchical Group-wise Ranking

Multi-Objective Training

- Calibration Objective:
 - Logloss applied on \hat{y} from original embedding \mathbf{e}_u , \mathbf{e}_i .
- Auxiliary Calibration Objective:
 - Logloss applied on \hat{y}^q from:
 - Quantized user embedding e_{μ}^{q} (via STE)
 - Stop-gradient item embedding $sg(e_i)$
- Hierarchical Group-wise Ranking Objective:
 - Listwise Cross-Entropy loss is applied across RVQ levels.
 - Each level's loss is weighted by learned uncertainty.

Objective Function

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{logloss}}(\hat{y}, y) + \lambda \mathcal{L}_{\text{logloss}}(\hat{y}^q, y) \\ &+ \sum_{I=1}^{L} \left(\frac{1}{2\sigma_I^2} \mathcal{L}_{\text{listce}}^{(I)} + \log \sigma_I \right) \end{split}$$

Model Performance Comparison

Objective	KuaiRand			Taobao		
	LogLoss	AUC	GAUC	LogLoss	AUC	GAUC
LogLoss	0.5735	0.7510	0.6911	0.2011	0.6420	0.5708
LogLoss + PairwiseLogistic	0.5723	0.7524	0.6921	0.2002	0.6435	0.5728
LogLoss + SoftmaxCE	0.5727	0.7520	0.6920	0.2005	0.6428	0.5720
LogLoss + ListCE	0.5709	0.7537	0.6932	0.1995	0.6443	0.5734
JRC	0.5713	0.7533	0.6930	0.1993	0.6540	0.5732
GroupCE (proposed)	0.5681	0.7556	0.6953	0.1982	0.6556	0.5745

Effect of Batch Size on Model Performance

- LogLoss and GAUC improve significantly as batch size increases.
- Larger batches enable more diverse cross-context negative samples, enhancing training signal.

Summary

- We propose a hierarchical group-wise sampling strategy for cross-context hard negative mining, based on a learned user hierarchy derived from Residual Vector Quantization (RVQ).
- We introduce a hierarchical listwise ranking loss to capture coarse-to-fine-grained preference signals across multiple granularity levels of user similarity.

Thank You!