Click A, Buy B:
Rethinking
Conversion
Attribution in ECommerce
Recommendations

AdKDD 2025 |
Xiangyu Zeng, Amit
Jaspal, Mohit Jaggi,
Goutham
Panneeru, Kevin
Huang, Prathap
Maniraju, Bin Liu,
Nicolas Bievre,
Ankur Jain

Executive Summary

Users often click Product
 A but purchase Product B
 the CABB problem.

• 44% of conversions show CABB behavior.

• Traditional attribution over-rewards clicks that correlate, not cause.

 Our approach: multitask learning with similarityweighted CABB signals.

Agenda & Roadmap

The CABBProblem (5 min)

Our MultitaskSolution (8 min)

Experimental Results (7 min)

Future Work &Discussion (5 min)

THE CABB PROBLEM

Understanding user behavior and model bias

The CABB Phenomenon

- Click A → Buy B violates standard attribution.
- 3 scenarios:
- 1. CABA Buy what you click.
- 2. Meaningful CABB Buy a related item.
- 3. Noisy CABB Buy an unrelated item.

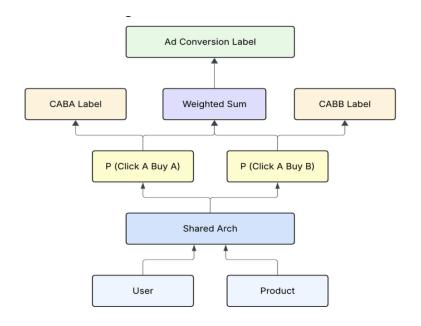
Scale of the Problem

- 44% of conversions = CABB.
- • 81% of buys are within same product set.
- Biased attribution reduces recommendation diversity.

Why Traditional Models Fail

- Last-click attribution = correlation ≠ causation.
- Example: Click iPhone, buy iPad, iPhone gets credit.
- Leads to overvaluing popular clickinducing products.

Business Impact


- Suboptimal recommendations.
- Advertisers undervalued or over-credited.
- Misaligned incentives for diversity and user satisfaction.

TECHNICAL SOLUTION

Multitask architecture and similarity-aware weighting

Our Approach Overview

- Multitask Learning + Similarity Weighting.
- Two heads:
- CABA: Click A → Buy A.
- - CABB: Click A \rightarrow Buy B.
- Similarity-aware reweighting based on taxonomy.

Multitask Architecture

- Shared embedding layers for features.
- Separate output layers for CABA and CABB.
- Loss functions combined with weight λ.

Taxonomy-Aware Similarity

- Products mapped to leaf taxonomy categories.
- Co-engagement patterns aggregated at category level.
- Similarity matrix via collaborative filtering.

Similarity Weighting Formula

- Category vector $v_c \in \mathbb{R}^{n} \cup \mathbb{R}^{n}$ from user interactions.
- Cosine similarity: S(c_i, c_j).
- Final weight: $\alpha^{(AB)} = S(cat(A), cat(B))$.

Training Objective

- CABA Loss: Binary cross-entropy.
- CABB Loss: Weighted cross-entropy.
- Final loss: $\mathcal{L} = \mathcal{L}_CABA + \lambda \mathcal{L}_CABB$.

EXPERIMENTAL RESULTS

Offline and online validation of model performance

Experimental Setup

- Real-world e-commerce session logs.
- CABA and CABB events identified.
- Normalized Entropy (NE) as evaluation metric.

Overall Performance

- 13.9% reduction in NE vs. last-click baseline.
- NE dropped from 0.575 → 0.495.
- Validates benefit of CABB-aware multitask model.

Task-Level Analysis

- CABB performance improves as λ increases.
- Optimal $\lambda = 0.75$ (balanced NE across tasks).
- Joint training enhances both CABA and CABB.

Online A/B Test Results

- +0.25% lift in business metric.
- +1.27% increase in CABA rate.
- More relevant, personalized recommendations.

ANALYSIS & DISCUSSION

Deep dive into weighting, features, and limitations

Ablation Studies

- Static weighting introduces noise.
- • i2i similarity underperforms.
- Taxonomy + CF yields best CABA NE (0.441).

Feature Importance Analysis

- CABA: Personalization-heavy (e.g., past views).
- CABB: Semi-personalized + popularity-based signals.
- Confirms differences in task dependencies.

Limitations & Challenges

- Taxonomy quality sensitivity.
- Noisy co-engagement signals.
- λ tuning requires careful experimentation.

FUTURE WORK & CONCLUSION

Expanding the CABB framework

Future Directions

- LLM-based similarity labeling.
- Dynamic λ via attention-based learning.
- Extend attribution beyond session boundaries.

Key Takeaways

- CABB: 44% of conversions, major attribution challenge.
- Solution: Multitask + taxonomy similarity weighting.
- Results: 13.9% NE drop, +0.25% online lift.
- Deployment: Running successfully in production.

Questions & Discussion

- • Thank you!
- • Questions?
- Contact: xiangyuzeng@meta.com, ajaspal@meta.com
- Paper: AdKDD 2025 Click A, Buy B