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ABSTRACT
Click-through rate prediction underpins real-time bidding strate-
gies in display advertising. We propose a unified approach that
integrates beta-based Bayesian priors, Dynamic Linear Models, and
collaborative filtering to address data sparsity, temporal dynamics,
and neighbor relationships. A hierarchical Bayesian structure shares
information across campaigns from the same advertiser, improving
estimates when per-campaign data are limited. On a real-world
dataset, our method outperforms baselines including standard col-
laborative filtering, random forest, and XGBoost, achieving superior
log-loss and mean squared error.
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1 INTRODUCTION
Predicting click-through rate (CTR) is a cornerstone of real-time
bidding (RTB) systems in online advertising. Small improvements
in prediction accuracy can significantly increase the success of
ad campaigns, as advertisers and platforms seek to optimize both
user engagement and revenue generation [10]. Despite the steady
advance of machine learning methods for CTR, several challenges
persist. First, human behavior exhibits considerable variation over
time, leading to temporal shifts that degrade the performance of
static models. Second, the sheer number of possible (person, item)
pairs, combined with typically rare click data, creates serious data
sparsity issues that can undermine a model’s ability to generalize.
Finally, real-time environments demand fast and reliable predictions
at scale, placing practical constraints on the complexity and latency
of CTR models.

Past approaches have tackled these challenges from different
angles. Logistic regression and related generalized linear models
gave interpretable baselines [10], but struggled with large, high-
dimensional feature spaces. Factorization machines and deep learn-
ing methods incorporate feature interactions more effectively [4, 9],
but require substantial data and hyperparameter tuning to be robust
in sparse regimes. Gradient boosting frameworks such as XGBoost
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[1] can efficiently handle non-linearities and missing data, but
they typically lack a built-in mechanism for temporal adaptation.
Moreover, collaborative filtering (CF) has proven valuable in rec-
ommendation scenarios by leveraging user–item similarities, but
the method falters when temporal trends or severe data sparsity
are present [6].

In this paper, we propose an integrated solution that unifies
Bayesian modeling, Dynamic Linear Models (DLMs), and collabo-
rative filtering for CTR estimation. Our method uses a beta prior
to capture uncertainty in sparse data within a DLM framework to
model evolving CTR over time, then refines these posterior esti-
mates using item-based collaborative filtering. We also introduce a
hierarchical Bayesian component that shares information across
related campaigns (e.g., those from the same advertiser), thereby
mitigating cold-start problems and increasing accuracy. By system-
atically merging these elements, our approach reduces the adverse
effects of data sparsity, adapts to temporal changes, and captures
structural relationships between items and campaigns.

We evaluate our method on a large-scale dataset from a produc-
tion RTB environment and benchmark it against well-established
baselines: vanilla collaborative filtering, random forests, and XG-
Boost. Experimental results show that our framework achieves
state-of-the-art performance in terms of log-loss and mean-squared
error, outperforming alternatives by a considerable margin. Further
analysis reveals that each component—such as the beta prior, the
DLM smoothing, and the collaborative filtering step—contributes
distinct benefits to the final model. Crucially, our pipeline remains
computationally feasible for practical deployment, as both the DLM
and CF steps are highly parallel and the Bayesian updates rely on
conjugate priors, enabling efficient runtimes even under real-time
requirements and the non-stationary nature of the online advertis-
ing ecosystem.

2 RELATEDWORK
CTR prediction lies at the core of many recommender systems and
RTB platforms, driving advertising revenue and user satisfaction. A
rich body of literature has explored methods ranging from classical
regression techniques to sophisticated deep learning architectures,
each addressing different aspects of sparsity, feature representation,
or temporal adaptation. In this section, we review representative
advances in CTR modeling, emphasizing both established baselines
and recent progress toward integrated, adaptive models.

Generalized Linear and Tree-Based Methods. Early CTR optimiza-
tion systems often relied on logistic regression (LR) for CTR esti-
mation due to its interpretability and ability to incorporate large
numbers of sparse features [10]. Meanwhile, tree-based ensemble
methods gained traction by capturing non-linear feature interac-
tions [5]. Approaches like Gradient Boosting Machines (GBMs) and
XGBoost [1] streamlined training and inference, demonstrating
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strong performance on public benchmarks and real-world produc-
tion logs. Although effective in handling complex feature patterns,
these methods commonly treat each observation as temporally in-
dependent, relying on feature engineering or retraining for any
time-varying behavior.

Factorization and Deep Learning Approaches. Factorization Ma-
chines (FMs) [9] extended linear models by explicitly modeling
pairwise feature interactions with linear complexity. Deep learning
then pushed this idea further, using embedding layers for sparse
categorical features and neural networks for complex, high-order
interactions. Models such as DeepFM [4], Wide&Deep [2], and DIN
[13] found some success by automatically learning salient feature
interactions and user interest representations frommassive datasets.
Nevertheless, these approaches assume stationarity or rely on peri-
odically refreshed models, leaving them vulnerable to performance
degradation when user preferences change.

Collaborative Filtering and Matrix Factorization. Borrowing from
recommendation systems, CF posits that users with similar histori-
cal engagement patterns exhibit similar future behavior [7]. Matrix
factorization techniques decompose the (user, item) ratings matrix
into latent factors, effectively handling data sparsity [8]. Follow-up
research introduced temporal extensions (TimeSVD++), capturing
evolving user and item dynamics [6]. However, conventional CF
methods often assume relatively stable preference structures, lack
explicit uncertainty quantification and require significant modifica-
tions for application in RTB contexts.

BayesianModeling andHierarchical Structures. Bayesianmethods
handle data sparsity by introducing priors that capture parameter
uncertainty. In CTR prediction, hierarchical Bayesian frameworks
can pool statistical strength across related entities such as advertis-
ers or product categories [3]. Gamma priors for precision or beta
priors for click-rate parameters have proven effective in prevent-
ing overfitting in sparse regimes. Despite these advantages, purely
Bayesian or hierarchical methods can struggle with large-scale
temporal data unless carefully optimized.

Temporal Adaptation via State-Space Models. Time-varying mod-
els incorporate sequential structure to adapt to user preference drift.
Kalman filtering and Dynamic Linear Models (DLMs) [11] provide
a probabilistic mechanism for updating beliefs about latent states
over time. In online advertising, they can track CTR fluctuations
driven by seasonal or campaign-related factors. However, DLMs
alone do not fully exploit cross-campaign or cross-item signals, nor
directly address unbalanced data when certain user-item pairs are
underrepresented.

Reinforcement Learning and Bandit Perspectives. Recent work
interprets ad allocation as a sequential decision-making problem,
framing CTR prediction within multi-armed bandit or reinforce-
ment learning (RL) paradigms [12]. These approaches dynamically
update bidding strategies to maximize cumulative reward (e.g.,
clicks or conversions), often modeling the underlying user response
stochastically. While RL-based methods can excel at balancing ex-
ploration and exploitation, they typically require a reliable reward
model and careful sample-efficiency tuning, which is challenging
in extremely sparse settings.

Our Contributions in Context. In contrast to purely static ML
models, purely Bayesian frameworks, or purely RL-based strate-
gies, our work bridges multiple elements to tackle real-world CTR
estimation holistically:

• We adopt a beta-based prior to handle item-level or user-level
data sparsity, ensuring robust uncertainty estimates.

• We embedDLM updates for smoothing temporal fluctuations,
reducing the cost of frequent retraining.

• We refine these posterior estimates using collaborative filter-
ing, exploiting cross-campaign or cross-item relationships.

• We incorporate a hierarchical Bayesian model to share infor-
mation across related campaigns (e.g., from the same adver-
tiser), mitigating cold-start and rare-event scenarios.

As a result, our approach not only captures evolving CTR dynamics
but also addresses data scarcity and latent structure in large-scale
RTB environments. Our experimental evaluation demonstrates su-
perior performance against strong baselines, enabling practical use
in real-world online advertising systems where speed, scalability,
and adaptability are essential.

3 METHODOLOGY
This section describes our unified approach to CTR estimation,
integrating beta-based Bayesian priors, a Kalman-filtered DLM, col-
laborative filtering (CF), and a hierarchical Bayesian framework.We
begin with a high-level outline of how these components interact,
then detail each step in the subsequent subsections. Algorithm 1
defines the setup and calls Algorithm 2 for the optimization loop.

3.1 Overview
We aim to estimate the click-through rate (CTR) for a given cam-
paign, represented by user 𝑢, and an ad opportunity, represented
by item 𝑖 , at time 𝑡 . Here, our units of analysis are campaigns and
ad opportunities, but we adopt the conventional user-item nota-
tion prevalent in collaborative filtering literature. Our procedure
operates offline in batches, and the final CTR matrix is retrieved in
real-time bidding. Concretely:

(1) Beta Hierarchical Model: Each user–item pair has beta-
based parameters, with hyperpriors across advertisers (or
other groupings) to stabilize estimates in sparse scenarios.

(2) DLM (Kalman Filter) Fit: A Gaussian DLM is run sepa-
rately to produce a posterior CTR for each (𝑢, 𝑖) at each time
𝑡 , capturing temporal changes day by day.

(3) CF on the DLM Posterior: We treat the DLM-updated
CTR matrix as input to item-based CF. Neighbor similari-
ties (scaled by impressions; i.e., the number of times the ad
has been shown) refine each posterior estimate, partially
blending in the collaborative signals.

(4) Global Mixture with Beta: Finally, a single global mixing
parameter combines the beta posterior mean for each pair
(𝑢, 𝑖) with the CF-refined DLM estimate. This ensures that
beta priors remain influential for pairs with less data, while
the DLM and CF steps drive estimates where observational
evidence is stronger.

Although each step can be updated efficiently with local or
gradient-based methods, the presence of collaborative filtering and
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Algorithm 1 Beta+DLM+CF Pipeline: Initialization and De-
ployment

Require: Historical logs (𝑐𝑢,𝑖,𝑡 , 𝑛𝑢,𝑖,𝑡 ) over time; initial global priors
(𝛼0, 𝛽0) from system logs; hierarchical structure (advertiser-
level).

Ensure: CTR estimates 𝑥𝑢,𝑖,𝑡 for real-time bidding.

1: (A) Calibrate Process Noise:
2: Learn optimal 𝑄 that minimizes LKF.

3: (B) Offline Iterative Updates Until Convergence (Algo-
rithm 2):

4: Run the repeated steps (Beta priors, DLM, CF, hierarchical
updates, calibration) in Algorithm 2, monitoring changes in(
𝑤𝛼 ,𝑤𝛽 , 𝜙

)
and overall loss.

5: Return Final CTR estimates 𝑥𝑢,𝑖,𝑡 for each (𝑢, 𝑖, 𝑡) at conver-
gence.

6: (C) Offline-to-Online Deployment:
7: (a) Once converged, store final CTR estimates 𝑥𝑢,𝑖,𝑡 in a fast

lookup table.
8: (b) At bid time, retrieve 𝑥𝑢,𝑖,𝑡 for the relevant (𝑢, 𝑖) pair to

score ad opportunities.

global mixing means the overall model is not strictly conjugate.
Attaining a fully conjugate solution would require handling global
item–item dependencies in closed-form, which quickly becomes
intractable for large-scale data. In practice, however, the partial
conjugacy in beta–binomial updates and Gaussian DLM provides
strong computational advantages, allowing us to handle real-world
volumes without MCMC sampling or variational EM.

3.2 Beta Priors: (𝛼𝑢,𝑖 , 𝛽𝑢,𝑖)
To model the prior distribution on CTR𝑢,𝑖 (the click-through rate
for user 𝑢 on item 𝑖), we adopt a Beta(𝛼𝑢,𝑖 , 𝛽𝑢,𝑖 ) form. This beta
prior incorporates both the observed clicks/impressions and a global
system-level prior captured by (𝛼0, 𝛽0). The values of 𝛼0 and 𝛽0 are
derived from historical log data at the start of the process, providing a
consistent global reference point for all user–item pairs. Concretely,

𝛼𝑢,𝑖 = 𝑐𝑢,𝑖 + 𝑤𝛼 𝛼0, 𝛽𝑢,𝑖 =
(
𝑛𝑢,𝑖 − 𝑐𝑢,𝑖

)
+ 𝑤𝛽 𝛽0,

where 𝑐𝑢,𝑖 is the number of clicks and 𝑛𝑢,𝑖 is the number of impres-
sions for campaign 𝑢 on item 𝑖 . The learnable weights (𝑤𝛼 ,𝑤𝛽 )
ensure that the global prior does not dominate the data, especially
in sparse regimes, by minimizing the negative log-likelihood of the
prior.

Negative Log-Likelihood of the Beta Prior. For a single pair (𝑢, 𝑖),
the negative log-likelihood is

ℓ
(𝑢,𝑖 )
prior = − 𝑐𝑢,𝑖 ln

( 𝛼𝑢,𝑖
𝛼𝑢,𝑖+𝛽𝑢,𝑖

)
−

(
𝑛𝑢,𝑖 − 𝑐𝑢,𝑖

)
ln
( 𝛽𝑢,𝑖
𝛼𝑢,𝑖+𝛽𝑢,𝑖

)
.

Rewriting,

ℓ
(𝑢,𝑖 )
prior = − 𝑐𝑢,𝑖

[
ln(𝛼𝑢,𝑖 ) − ln(𝛼𝑢,𝑖 + 𝛽𝑢,𝑖 )

]
− (𝑛𝑢,𝑖 − 𝑐𝑢,𝑖 )

[
ln(𝛽𝑢,𝑖 ) − ln(𝛼𝑢,𝑖 + 𝛽𝑢,𝑖 )

]
.

The partial derivatives with respect to 𝑤𝛼 and 𝑤𝛽 involve the
chain rule applied to 𝛼𝑢,𝑖 and 𝛽𝑢,𝑖 . Specifically, for the hierarchical

Algorithm 2 Beta+DLM+CF Iterative Steps (Repeated Until
Convergence)

1: Beta Prior Initialization:
2: For each (𝑢, 𝑖), set

𝛼𝑢,𝑖 = 𝑐𝑢,𝑖 + 𝑤𝛼 𝛼0, 𝛽𝑢,𝑖 =
(
𝑛𝑢,𝑖 − 𝑐𝑢,𝑖

)
+ 𝑤𝛽 𝛽0 .

3: Solve minLprior to update𝑤𝛼 ,𝑤𝛽 .

4: Kalman Filter (DLM) Step:
5: (a) Predict:

𝑥𝑢,𝑖,𝑡 |𝑡−1 = 𝑥𝑢,𝑖,𝑡−1, 𝑃𝑢,𝑖,𝑡 |𝑡−1 = 𝑃𝑢,𝑖,𝑡−1 +𝑄𝑢,𝑖 .

6: (b) Compute Kalman Gain:

𝐾𝑢,𝑖,𝑡 =
𝑃𝑢,𝑖,𝑡 |𝑡−1

𝑃𝑢,𝑖,𝑡 |𝑡−1 + 𝑅𝑢,𝑖,𝑡
.

7: (c) Update:

𝑥𝑢,𝑖,𝑡 = 𝑥𝑢,𝑖,𝑡 |𝑡−1 + 𝐾𝑢,𝑖,𝑡
(
𝑧𝑢,𝑖,𝑡 − 𝑥𝑢,𝑖,𝑡 |𝑡−1

)
,

𝑃𝑢,𝑖,𝑡 =
(
1 − 𝐾𝑢,𝑖,𝑡

)
𝑃𝑢,𝑖,𝑡 |𝑡−1 .

8: Collaborative Filtering (Inverse Beta Variance):
9: For each (𝑢, 𝑖), compute

𝑤𝑢,𝑖 =

(
𝛼𝑢,𝑖 + 𝛽𝑢,𝑖

)2 (
𝛼𝑢,𝑖 + 𝛽𝑢,𝑖 + 1

)
𝛼𝑢,𝑖 𝛽𝑢,𝑖

,

the reciprocal of the beta variance.
10: Calculate item–item similarities sim(𝑖, 𝑗) using𝑤𝑢,𝑖 𝑤𝑢,𝑗 and

𝑥𝑢,𝑖,𝑡 from the DLM.
11: Update each CTR:

𝑥𝑢,𝑖,𝑡 =

∑
𝑗 sim(𝑖, 𝑗) 𝑥𝑢,𝑗,𝑡∑

𝑗

��sim(𝑖, 𝑗)
�� .

12: Hierarchical Bayesian Updates:
13: Incorporate hierarchical priors on (𝑤𝛼 ,𝑤𝛽 ) and (𝛼0, 𝛽0).
14: Update 𝑥final (𝑢, 𝑖, 𝑡) = 𝜙 𝑝beta (𝑢, 𝑖) + (1 − 𝜙) 𝑥𝑢,𝑖,𝑡 .
15: Solve min

[
Lprior + LCF + LKF + 𝜆𝑝

(
𝑤2
𝛼 +𝑤2

𝛽
+ 𝜙2) ] .

16: Check Convergence:
17: If changes in (𝑤𝛼 ,𝑤𝛽 , 𝜙) or the total loss are below threshold,

end. Else, repeat.

weights𝑤𝛼 and𝑤𝛽 , we have:

𝜕Lprior

𝜕𝑤𝛼
=

∑︁
(𝑢,𝑖 )

𝑐𝑢,𝑖 ·
1
𝛼𝑢,𝑖

·
𝜕𝛼𝑢,𝑖

𝜕𝑤𝛼
−𝑛𝑢,𝑖 ·

1
𝛼𝑢,𝑖 + 𝛽𝑢,𝑖

·
𝜕(𝛼𝑢,𝑖 + 𝛽𝑢,𝑖 )

𝜕𝑤𝛼
,

and similarly for𝑤𝛽 .
Summing this cost over all (𝑢, 𝑖) yields the overall prior loss,

Lprior =
∑︁
(𝑢,𝑖 )

ℓ
(𝑢,𝑖 )
prior .

We update (𝑤𝛼 ,𝑤𝛽 ) via gradient-based methods until convergence,
ensuring that the final priors respect the data while retaining the
global baseline context from (𝛼0, 𝛽0).
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3.3 Kalman Filtering for Temporal Dynamics
To handle temporal variation in campaign–item CTRs, we adopt a
Dynamic Linear Model (DLM). At time 𝑡 , the observed CTR 𝑧𝑢,𝑖,𝑡
is treated as a noisy measurement of a latent state 𝑥𝑢,𝑖,𝑡 , which
evolves according to

𝑥𝑢,𝑖,𝑡 = 𝑥𝑢,𝑖,𝑡−1 + 𝜔𝑢,𝑖,𝑡 , 𝑧𝑢,𝑖,𝑡 = 𝑥𝑢,𝑖,𝑡 + 𝜈𝑢,𝑖,𝑡 ,
where𝜔𝑢,𝑖,𝑡 ∼ N(0, 𝑄𝑢,𝑖 ) is the process noise, and𝜈𝑢,𝑖,𝑡 ∼ N(0, 𝑅𝑢,𝑖,𝑡 )
is the measurement noise. The standard Kalman update recursions
yield a posterior estimate 𝑥𝑢,𝑖,𝑡 of the latent CTR. In practice, the
measurement variance 𝑅𝑢,𝑖,𝑡 approximates a binomial proportion:

𝑅𝑢,𝑖,𝑡 ≈
𝑥𝑢,𝑖,𝑡 |𝑡−1

(
1 − 𝑥𝑢,𝑖,𝑡 |𝑡−1

)
𝑛𝑢,𝑖,𝑡

,

where 𝑛𝑢,𝑖,𝑡 is the number of impressions at time 𝑡 .

Process Noise Calibration. Although one could define 𝑄𝑢,𝑖 =

exp(𝜃𝑢,𝑖 ) and optimize a distinct parameter 𝜃𝑢,𝑖 for each user–item
pair, we instead selects a single global 𝜎2 for the sake of computa-
tional tractability. We perform a grid search for 𝑄 over a range of
candidate values and choose the one minimizing a Kalman-filter
SSE. Formally,

min
𝑄

LKF =
∑︁

𝑡,𝑖∈top-𝑘

[ (𝑧𝑖,𝑡 − 𝑥𝑖,𝑡 |𝑡−1
)2

𝑃𝑖,𝑡 |𝑡−1 + 𝑅𝑖,𝑡
+ ln

(
𝑃𝑖,𝑡 |𝑡−1 + 𝑅𝑖,𝑡

) ]
,

where 𝑃𝑖,𝑡 |𝑡−1 = 𝑃𝑖,𝑡−1 +𝑄 is the prior state uncertainty for item
𝑖 , and 𝑧𝑖,𝑡 is the observed CTR. After identifying the 𝑄 value that
best fits these top-𝑘 items, we apply it globally to every campaign–
item pair in the analytic pipeline. This strategy balances numerical
tractability with robust smoothing, obviating the need for item-
specific process noise estimates and preventing extreme 𝑄 values
in sparse regions of the dataset.

3.4 Collaborative Filtering with
Inverse-Variance Weights

Given 𝑥𝑢,𝑖,𝑡 , the DLM posterior 𝑥𝑢,𝑖,𝑡 mean for each campaign 𝑢
and item 𝑖 at time 𝑡 , we refine those estimates via item-based col-
laborative filtering (CF) on centered data. Each pair (𝑢, 𝑖) receives a
beta-based weight:

𝑤𝑢,𝑖 =

(
𝛼𝑢,𝑖 + 𝛽𝑢,𝑖

)2 (
𝛼𝑢,𝑖 + 𝛽𝑢,𝑖 + 1

)
𝛼𝑢,𝑖 𝛽𝑢,𝑖

,

which is the reciprocal of the variance of the beta distribution. Items
with sparse or volatile data thus have smaller 𝑤𝑢,𝑖 and exert less
influence on other items.

Weighted Cosine Similarity on Centered Vectors. To compare items
𝑖 and 𝑗 , we first center each item’s DLM posteriors across campaigns:

𝑥 ′𝑢,𝑖,𝑡 = 𝑥𝑢,𝑖,𝑡 − ¯̂𝑥𝑖,𝑡 ,

where 𝑥𝑖,𝑡 is item 𝑖’s mean DLM posterior CTR across users at
time 𝑡 . Then, we incorporate the beta weights in a weighted cosine
similarity:

sim𝑤 (𝑖, 𝑗) =

∑︁
𝑢

𝑤𝑢,𝑖 𝑤𝑢,𝑗

(
𝑥 ′𝑢,𝑖,𝑡

) (
𝑥 ′𝑢,𝑗,𝑡

)
√︂∑︁

𝑢

(
𝑤𝑢,𝑖 𝑥

′
𝑢,𝑖,𝑡

)2 √︂∑︁
𝑢

(
𝑤𝑢,𝑗 𝑥

′
𝑢,𝑗,𝑡

)2 .

Hence, each item’s column is effectively scaled by𝑤𝑢,𝑖 before taking
the dot products. Once we obtain sim𝑤 (𝑖, 𝑗) for all pairs, we update
the CTR estimate for user 𝑢 on item 𝑖 via:

𝑥𝑢,𝑖,𝑡 =

∑︁
𝑗

sim𝑤 (𝑖, 𝑗) 𝑥𝑢,𝑗,𝑡∑︁
𝑗

��sim𝑤 (𝑖, 𝑗)
�� .

The denominator normalizes by the sum of absolute similarities
so that high-similarity neighbors have more impact. One may also
impose a top-𝑘 truncation on neighbors to reduce computational
overhead. This CF step thus blends time-aware DLM updates with
beta-based inverse-variance weighting, providing robust, neighbor-
driven refinements in sparse settings.

3.5 Hierarchical Bayesian Modeling
Campaigns from the same advertiser often share thematic designs
or targeting constraints. To leverage these similarities, we incor-
porate hierarchical gamma priors on the beta weights (𝑤𝛼 ,𝑤𝛽 )
and on (𝛼0, 𝛽0) for each advertiser by pooling data across multiple
campaigns:

𝑤𝛼 ∼ Gamma(𝑎𝛼 , 𝑏𝛼 ), 𝑤𝛽 ∼ Gamma(𝑎𝛽 , 𝑏𝛽 ) .
These hyperpriors reduce variance and mitigate cold-start problems
for newly added campaigns. They may be fitted via gradient-based
methods.

Blending Beta Posterior and DLM State. In addition to the hier-
archical structure on (𝑤𝛼 ,𝑤𝛽 ) and (𝛼0, 𝛽0), we define a mixture
to combine the beta-based posterior mean with the DLM-updated
CTR. Specifically, for each campaign–item pair (𝑢, 𝑖), let

𝑝beta (𝑢, 𝑖) =
𝛼𝑢,𝑖

𝛼𝑢,𝑖 + 𝛽𝑢,𝑖
,

represent the beta posterior mean derived from (𝛼𝑢,𝑖 , 𝛽𝑢,𝑖 ). Then,
we introduce a global mixture parameter 𝜙 ∈ [0, 1]. The final CTR
prediction is:

𝑥final (𝑢, 𝑖, 𝑡) = 𝜙
[
𝑝beta (𝑢, 𝑖)

]
+

(
1 − 𝜙

)
𝑥𝑢,𝑖,𝑡 ,

where 𝑥𝑢,𝑖,𝑡 is the CF-based state. Hence, the hierarchical Bayesian
framework supplies campaign-level priors for (𝑤𝛼 ,𝑤𝛽 ) and base-
line hyperparameters (𝛼0, 𝛽0), while the DLM smoothly adapts CTR
estimates over time and the CF step incorporates item exploration.
The mixture factor 𝜙 balances these two components, finding the
optimal mixture between the total accrued information through
the beta posterior and the time-varying DLM+CF process.

3.6 Offline Training and Real-Time Scoring
All steps run in a batch pipeline, collecting daily (or sub-daily)
logs to update (𝑤𝛼 ,𝑤𝛽 , 𝜙), 𝑄 , CF similarities, and hierarchical pa-
rameters. The final CTR estimates 𝑥final (𝑢, 𝑖, 𝑡) are then cached for
real-time retrieval, providing swift inferences for high-frequency
bidding requests.

4 EXPERIMENTS AND RESULTS
We conduct an extensive set of experiments on a large-scale mo-
bile display advertising dataset sampled from InMarket’s Demand-
Side Platform (DSP). Our primary goal is to investigate whether
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combining beta-based priors, Dynamic Linear Models (DLMs), and
collaborative filtering (CF) with inverse variance weighting can
surpass established baselines in click-through rate (CTR) prediction
accuracy. This section outlines the data properties, experimental
protocols, evaluation criteria, and the final performance results on
the test set.

4.1 Dataset and Experimental Protocol
Data Collection and Summary. We use impression-and-click logs

from InMarket’s DSP, covering campaigns (users) and ad oppor-
tunities (items) over July 1, 2024 to September 30, 2024. Each
record comprises:

• Campaign ID (𝑢),
• Item/App ID (𝑖),
• Impressions (𝑛𝑢,𝑖,𝑡 ),
• Clicks (𝑐𝑢,𝑖,𝑡 ),
• Day-level timestamp (𝑡).

The dataset is highly sparse and includes 1,438 unique campaigns,
18,653 items, and 36 advertisers. In total, there are 588,457,330 im-
pressions, 2,655,840 clicks, and an overall average CTR of 0.00451.

Time-Based Partitioning. We split the data chronologically into:
• Training: First 56 days (60%) of the log period,
• Validation: Next 18 days (20%),
• Test: Final 18 days (20%).

Hence, the training set covers early July to late August; the vali-
dation set spans the subsequent 18 days; and the test set covers
the remainder of September. We optimize hyperparameters on the
validation set, then assess final model performance on the test set.

Competing Methods. We evaluate the following models:
• Beta+DLM+CF (ours): Integrates beta-based priors, tempo-
ral smoothing via a Kalman-filtered DLM, and CF weighted
by the inverse beta variance.

• Beta+CF: An ablated version of our approach that uses beta
priors in CF but omits the DLM time-series component.

• DLM+CF: Another ablated version that applies a DLM for
temporal updates plus CF, but without beta priors.

• Vanilla CF: A standard item-based collaborative filter with-
out beta-based uncertainty or temporal modeling.

• RandomForest: A tree-ensemble classifier using campaign/item
IDs as categorical features, ignoring explicit temporal adap-
tation.

• XGBoost: A boosted-tree classifier recognized for strong
performance in many CTR tasks, similarly lacking an explicit
temporal mechanism.

4.2 Evaluation Metrics
We report both MSE and log loss metrics. The log loss provides a
stronger penalization for rare events than most other measures:

Log-Loss (Binary Cross-Entropy).

LogLoss = −

∑
(𝑢,𝑖,𝑡 )

[
𝑐𝑢,𝑖,𝑡 ln(𝑥𝑢,𝑖,𝑡 ) +

(
𝑛𝑢,𝑖,𝑡 − 𝑐𝑢,𝑖,𝑡

)
ln
(
1 − 𝑥𝑢,𝑖,𝑡

) ]∑
(𝑢,𝑖,𝑡 ) 𝑛𝑢,𝑖,𝑡

.

Log-loss heavily penalizes poor probability estimates.

Mean Squared Error (MSE)..

MSE =
∑︁
(𝑢,𝑖,𝑡 )

(
𝑥𝑢,𝑖,𝑡 −

𝑐𝑢,𝑖,𝑡

𝑛𝑢,𝑖,𝑡

)2/ ∑︁
(𝑢,𝑖,𝑡 )

1,

which provides a simple global measure of prediction accuracy.

4.3 Test Set Results
Table 1 summarizes each method’s performance (log-loss and MSE)
on the test set. Notably, we incorporate two partial variants of our
final pipeline—Beta+CF and DLM+CF—to illustrate the incremental
gains from combining beta priors and dynamic modeling.

Table 1: Test Set Performance: Log-Loss and MSE (lower is
better). Our full Beta+DLM+CF approach achieves the best
accuracy, demonstrating the combined value of beta priors
and DLM smoothing.

Method Log-Loss MSE

Beta+DLM+CF 0.025234 0.000144
Beta+CF 0.029487 0.000185
DLM+CF 0.030523 0.000523
Vanilla CF 0.035877 0.000654
Random Forest 0.042545 0.000204
XGBoost 0.043481 0.000204

4.4 Discussion of Improvements
Impact of Beta Priors vs. DLM.. Comparing DLM+CF (log-loss

0.030523) with Beta+CF (log-loss 0.029487) reveals that beta priors
alone yield a larger improvement than DLM alone for these data.
This highlights how uncertainty modeling via beta distributions can
substantially mitigate sparse or cold-start conditions by preventing
overconfident estimates.

Combination of Beta and DLM.. Our full model, Beta+DLM+CF,
outperforms both partial variants (Beta+CF and DLM+CF ), under-
scoring the combined benefits of dynamic smoothing on top of
beta-based priors. In particular, the log-loss drops from 0.029487
to 0.025234—a relative improvement of over 14%—once we include
time-series adaptation in addition to beta’s uncertainty mechanism.

Comparison to Tree Methods. Random forest and XGBoost yield
higher log-loss (above 0.042) and slightly higher MSE, aligning
with previous observations that purely feature-based classifiers
often lack a built-in way to handle time-varying CTR or confidence
weighting for sparse user-item pairs.

Vanilla CF vs. Weighted Approaches. Vanilla CF performs worse
(0.035877 log-loss) than any version incorporating beta or DLM.
This gap illustrates the importance of weighting edges by confi-
dence (beta variance) and capturing time-series trends (DLM). The
naive CF approach fails to handle heterogeneity across campaigns,
leading to less reliable neighbor estimates.
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4.5 Summary of Experimental Findings
The experimental results confirm that Beta+DLM+CF provides
the most robust CTR predictions, with both beta priors and tempo-
ral smoothing offering clear advantages over partial or alternative
methods. Each ablated variant (Beta+CF, DLM+CF) highlights a
piece of our final pipeline’s contribution. Overall, these findings
motivate the integration of uncertainty modeling, dynamic adapta-
tion, and collaborative filtering in next-generation programmatic
advertising systems.

4.6 Runtime and Scalability
Another key advantage of our framework is its computational ef-
ficiency. Both the DLM updates and the item-based CF steps are
embarrassingly parallel, allowing us to batch daily logs or distribute
user–item pairs across multiple threads. Moreover, the Bayesian
components (beta prior updates, hierarchical hyperparameters) use
conjugate forms that yield closed-form updates.

On a 13th Gen Intel® CoreTM i9-13900H laptop, the entire 90-
day experiment (training + daily DLM + CF steps and convergence)
finished in 1 hour 47minutes. Once the model is fitted, generating
CTR outputs for a single new day took only 0.077 seconds per
campaign, making this approach well-suited for daily or sub-daily
updates in real-time bidding settings.

5 CONCLUSION
Wehave presented a newCTR prediction framework, Beta+DLM+CF,
which unifies beta-based priors, a Dynamic Linear Model (DLM)
for temporal smoothing, and collaborative filtering (CF) driven by
inverse beta variance weighting. This combination addresses three
key challenges in real-time bidding environments: uncertainty due
to sparse user–item interactions, non-stationary user behavior over
time, and the heterogeneous importance of different campaigns and
items. By learning priors that adapt to data availability, accounting
for temporal shifts with the Kalman filter, and emphasizing reliable
(low-variance) neighbors in CF, the proposed system significantly
improves log-loss and MSE relative to standard baselines.

Empirically, we demonstrated that our approach achieves state-
of-the-art performance on a large-scale dataset, outperforming
methods such as vanilla CF, item-average baselines, and strong
tree-based classifiers (Random Forest, XGBoost). An ablation anal-
ysis further confirmed that removing any of our framework’s com-
ponents (e.g., beta priors, DLM smoothing, or variance-based CF)
causes measurable deterioration in prediction accuracy. Moreover,
the hierarchical Bayesian extension empowers the system to mit-
igate cold-start conditions by pooling statistical strength across
related campaigns.

From a practical standpoint, the offline training plus real-time
inference design ensures compatibility with high-frequency pro-
grammatic auctions, where computational speed is paramount. Our
calibration procedures for process noise (𝑄) and hyperpriors (𝛼0, 𝛽0)
balance robustness with responsiveness to changes in user behavior.

Several promising directions remain for future exploration. First,
we intend to integrate more advanced embeddings and contextual
signals (e.g., user demographics or device types) into the CF step.
Second, adapting reinforcement learning or bandit methods on top

of Beta+DLM+CF could further optimize bidding policies, lever-
aging strong CTR predictions as a baseline while exploring novel
ad placements. Lastly, scaling hierarchical priors to thousands of
advertisers raises compelling research questions on distributed in-
ference and approximate Bayesian techniques. We anticipate that
continued refinement of these ideas will advance the field of CTR
prediction, offering increasingly accurate and adaptive solutions
for real-time advertising systems.
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