
More Ads, Happier Shoppers: Unified-Valuation Ad Allocation at
Scale

Sergey Kolbin

skolbin@wayfair.com

Wayfair LLC

Seattle, WA, USA

Arushi Jain

ajain31@wayfair.com

Wayfair LLC

Boston, MA, USA

Manavender Malgireddy

mmalgireddy@wayfair.com

Wayfair LLC

Seattle, WA, USA

Kurt Zimmer

kzimmer@wayfair.com

Wayfair LLC

Boston, MA, USA

Masoum Mosmer

mmosmer@wayfair.com

Wayfair LLC

Mountain View, CA, USA

Patrick Phelps

pphelps@wayfair.com

Wayfair LLC

Boston, MA, USA

Abstract
Balancing short-term ad revenue with long-term user satisfaction

is a central challenge in sponsored product search. We propose

common currency, a unified ranking framework that merges spon-

sored and organic results within the same valuation. By translating

predicted clicks and conversions into variable contribution dollars

(VCD), both ad and organic items compete on a single, profit-based

metric. We combine this objective with guardrails on relevance

and ad load to preserve a high- quality customer experience. Our

approach is implemented via a one-pass, order-preserving greedy

merge, which we show is near-optimal in offline simulations despite

the problem’s inherent non-monotonicities. We also compare real-

time and batch variants, finding that batch ranking recovers most

of the profit uplift while incurring significantly less latency. In a six-

week online experiment covering millions of keyword searches, our

method allowed to expand ads footprint and increased ad revenue

by 35% and, surprisingly, also improved conversion rates and long-

term profit across ads and organic products together. These results

suggest that when ads are relevant and well- spaced, elevating ad

load can benefit both advertisers and end users, challenging the clas-

sic trade-off narrative. We discuss lessons learned from production

deployment and outline directions for further enhancements.
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1 Introduction
Sponsored product ads now shape the way millions of shoppers

discover products online. Yet every additional ad competes with

organic results for scarce real estate, forcing platforms to juggle

three objectives that rarely align: (i) short-term ad revenue, (ii)

short- and long-term retailer profit, and (iii) customer experience

(e.g., measured by engagement and conversion rate CVR).

Status quo and blind spots. A common approach on e-commerce

search pages is a static footprint. This design (a) leaves material

revenue untappedwhenever relevant ads run out of slots, (b) ignores

the profit margin of what shoppers actually buy, (c) cannot adapt

to user ad tolerance. Recent feed-style work, notably Yan et al. [13],

tackles a different setting: an endless-scroll newsfeed. They blend

two pre-ranked lists (ads and organics) with a single shadow-price

parameter and enforce simple guardrails—top-slot and min-gap

between ads. However, their model optimizes expected ad revenue

and engagement, not profitmetrics like variable contribution dollars

(VCD) that matter in retail. It also omits grid-specific UX rules such

as max consecutive ads or organic-spacing quotas.

Our approach. We formulate ad vs. organic allocation on product

grids as a common currency optimization that prices every impres-

sion in dollar including ad revenue, variable contribution dollar

(VCD - profit per sale), and a conversion guardrail:

𝑢 = AdRevenue + pCVR
(
𝜆 + VCD

)
,

subject to page-level relevance and fine-grained guardrails on den-

sity and spacing. Because those guardrails introduce only short-

range dependencies, a single-pass greedy merge achieves >99% of

the objective value of a more complex block-filling search.

Using two million historical searches we tuned the Lagrange

multiplier 𝜆 and guardrails, then validated the policy in a six-week

A/B test on U.S. traffic. Contrary to the classic “ad-fatigue” narrative,

increasing the ads footprint simultaneously lifted ad revenue by

35%, and combined ads and organic VCD by 3% and CVR by 1%.

Our key contributions are:

(1) Unified-valuation ranking for e-commerce grids.We ex-

tend the ads-vs-organic framework of Yan et al. [13] to product

grids, incorporate profit (VCD) and viewability discounts, and

add block-length and spacing guard-rails tailored to product

tiles.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(2) Linear-time greedy merge with near-optimality in prac-
tice. A one-pass algorithm attains ≥99 % of the objective and is

lightweight enough for production deployment.

(3) Large-scale evidence that more ads can be a win–win. Of-
fline simulations and a live A/B test show concurrent lifts in Ad

Revenue, VCD, and CVR—demonstrating that higher ad density,

when relevance-constrained, can enhance both monetization

and shopper experience.

(4) Bridging science and production constraints. We quantify

the trade-off between real-time and weekly batch computation,

showing that cached, keyword-level footprints recover most of

the ad revenue upside with no additional serving latency.

2 Related Work
Balancing sponsored and organic content is a classical multiobjec-

tive optimization problem. Below we outline two research strands

and position our “common-currency” footprinting work within that

context.

Constrained and multi-objective optimization for ad insertion .

Google’s long-term experiments showed that short-run revenue

lifts can erode lifetime value, motivating guard-rails on ad load and

relevance [7]. A decade later, LinkedIn operationalized this idea

at feed scale: a post-ranking merge maximizes revenue subject to

an engagement constraint and simple UX rules [13]. JD.com gener-

alized the approach by assigning virtual bids to organic items so

that ads and organics compete in a single auction [4]. We follow

the same line, but adapt it to an e-commerce grid: (i) we price con-

versions in variable contribution dollars (VCD), (ii) introduce max

consecutive ads and organic spacing guardrails suited to product

tiles, and (iii) bridge science complexity with production constraints

(show that a greedy or batch approximations can deliver most of

the value).

Re-examining the “ad-fatigue” narrative. Google’s long-horizon

experiments famously showed that heavy ad loads can back-fire:

extra sponsored links boosted short-run clicks yet reduced long-run

usage once users learned to ignore clutter [7]. More recent evidence

paints a subtler picture. Multi-objective ranking on Taobao raised

both GMV and ad revenue in a 28-day test [14], and personalized

ad-load policies on a 200-million-user social feed delivered simulta-

neous lifts in engagement and ad returns [11]. Optimized ad-pod

scheduling on connected-TV streams likewise served additional ads

while preserving viewer completion rates [8]. These studies suggest

that when ads are relevant, well-spaced, and tailored to user tol-

erance, higher ad density need not erode organic engagement—in

fact it can enhance overall value. Our own online experiment (§6)

corroborates this emerging consensus: doubling ads footprint on

grid search raised page-level CVR, VCD and long-term gross rev-

enue and VCD, overturning the classic ad-fatigue concern in the

context of Wayfair product search.

3 Problem Formulation
3.1 Candidate Sets
Let 𝑂 = {1, . . . , |𝑂 |} be the organic candidates and 𝐴 = {1, . . . , |𝐴|}
the sponsored candidates. For each 𝑗 ∈ 𝑂 we have the predicted

Table 1: Notation used in Section 3

Symbol Description

𝑂, 𝐴 sets of organic and ad candidates

pCVR
𝑜
𝑗
, pCVR𝑎

𝑘
predicted conversion rate per impression

VCD
𝑜
𝑗
, VCD𝑎

𝑘
profit per order (short-term)

ar
𝑎
𝑘

expected ad revenue (pCTR × CPC)
𝜆 shadow price of a conversion

𝛿𝑣 per-slot viewability discount

𝛿𝑠 per-slot offline slot-bias correction factor

𝐶 minimum cumulative CVR

𝑚 max consecutive ads

𝑥 organic spacing multiplier after an ad block

conversion (per impression) rate pCVR
𝑜
𝑗
and per-order profit VCD

𝑜
𝑗
.

For each 𝑘 ∈ 𝐴 we know

ar
𝑎
𝑘
= pCTR

𝑎
𝑘
·CPC𝑘 , pCVR

𝑎
𝑘
, VCD

𝑎
𝑘
,

where ar
𝑎
𝑘
is the expected ad revenue in CPC model and is the

product of predicted click-through rate pCTR
𝑎
𝑘
and the clearing

price CPC𝑘 . Notice that our auction incorporates the floor price

which bounds CPC𝑘 from below.

Although the auction ranks ads by maximum bid, our page-level

optimization uses the clearing price CPC𝑘 instead. This aligns with

Wayfair profit, removes the incentive to inflate bids, and follows

the utility-vs-value perspective of [2, 6].

3.2 Page Variables
We need to fill 𝑁 product slots in search results. A binary vector

y = (𝑦1, . . . , 𝑦𝑁 ) ∈ {0, 1}𝑁 marks ads (𝑦𝑖 = 1) and organics (𝑦𝑖 = 0).

Define

𝑠 (𝑖, 𝑎) =
𝑖∑︁

𝑘=1

𝑦𝑘 , 𝑠 (𝑖, 𝑜) =
𝑖∑︁

𝑘=1

(1 − 𝑦𝑘 ),

so 𝑠 (𝑖, 𝑎) (resp. 𝑠 (𝑖, 𝑜)) is the running index of the ad (resp. organic)

item placed in slot 𝑖 .

3.3 Common-Currency Utility
We score each impression so that all terms can be expressed in

currency (e.g. USD):

𝑢𝑎
𝑘
= ar

𝑎
𝑘
+ pCVR𝑎

𝑘

(
𝜆 + VCD𝑎

𝑘

)
, 𝑢𝑜𝑗 = pCVR

𝑜
𝑗

(
𝜆 + VCD𝑜

𝑗

)
.

The common currency formulas for ad and organic products are the

same while recognizing that organic products do not generate ad

revenue. The shadow value 𝜆 converts orders into the same units as

profit and ad revenue (e.g. USD). With a slightly abuse of notation,

we include 𝜆 directly into utility, see below for further details.
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3.4 Objective
For each user search the objective is as follows:

max

y∈{0,1}𝑁

𝑁∑︁
𝑖=1

𝛿 𝑖
𝑣 ·

(
𝑦𝑖 · 𝑢𝑎𝑠 (𝑖,𝑎) + (1 − 𝑦𝑖 ) · 𝑢

𝑜
𝑠 (𝑖,𝑜 )

)
s.t.

𝑁∑︁
𝑖=1

[
𝑦𝑖 · pCVR𝑎𝑠 (𝑖,𝑎) +(1 − 𝑦𝑖 ) · pCVR

𝑜
𝑠 (𝑖,𝑜 )

]
≥ 𝐶 (Rel.)

max ad block length ≤ 𝑚 (LG-1)
after ad block of length 𝑏 insert ⌊𝑥 · 𝑏⌋ organics (LG-2)

(1)

𝛿𝑣 ∈ (0, 1] models viewability decay with scroll depth. Constraint

(Rel.) enforces a minimum page CVR and allows us to determine

the shadow value of an order 𝜆 (shared across all user searches)

through offline simulations in Section 5. LG-1 caps any contiguous

run of ads at𝑚 items (𝑚≤ 4). LG-2 requires at least ⌊𝑥 · 𝑏⌋ organic
results after an ad block of length 𝑏, rounded down for fractionals,

with 𝑥 ∈ [0.5, 2].

Deduplication. If a product appears in both candidate sets, we

keep its first occurrence and drop the duplicate; the same rule is

applied in offline simulations.

Order-preserving fill vs. footprint stability. Our solver keeps the

program-internal order produced by the Ads and Organic rankers

as in [13]. This modularity means each team can evolve its model

independently, but it also ties total footprint to upstream rank

changes (e.g., if one program wants to boost certain products, its

average pCVR declines reducing footprint). We tested an order-

agnostic version that first re-ranks all product candidates based

on common currency and only then decides the footprint; it hurt

key metrics in offline simulations due to the wedge in footprint

determination and actual SKUs placed. We therefore accept the

order-preserving trade-off and plan to manage long-term stability

by tuning 𝜆, tightening guardrails, or rolling out boosting changes

symmetrically across programs.

4 Merge Algorithms
Below we present two constructive heuristics that build a merged

page slot by slot from the pre-ranked Ad and Organic lists. Even

though we decided to proceed with Greedy in practice, we evalu-

ated that the loss is small relative to a more optimal approximate

solution.

4.1 Greedy merge (Algorithm 1)
Algorithm 1 is a single-pass 𝑂 (𝑁 ) merge identical in structure to

the rule used by [13]. Function GuardrailsOK(𝐿,𝑚, 𝑥) returns true
if appending one more ad to the currently merged list 𝐿 keeps the

current contiguous ad block ≤ 𝑚 and we already placed at least

⌊𝑥 ·𝑏⌋ organics after the last ad block.

4.2 Block-filling search (Algorithm 2)
Why greedy is sub-optimal. Each program’s list is internally

monotone in its own score, yet the common-currency utilities

{𝑢𝑎, 𝑢𝑜 } need not be monotone. Consider filling 𝑁 = 3 slots with

common currency utilities for ads as (0.02, 0.06, 0.03) and organic

Algorithm 1: Greedy merge
Input: ranked organics 𝐿𝑜 [1 . . . |𝑂 |], ranked ads

𝐿𝑎 [1 . . . |𝐴|]; max ad-block length𝑚, spacing factor

𝑥 ; target page length 𝑁

Output: merged list 𝐿[1 . . . 𝑁 ]
1 𝑗𝑜 ← 1, 𝑗𝑎 ← 1

2 while 𝑗𝑜 + 𝑗𝑎 ≤ 𝑁 do
3 if 𝑗𝑎 ≤ |𝐴| and 𝑢𝑎

𝑗𝑎
> 𝑢𝑜

𝑗𝑜
and GuardrailsOK(𝐿,𝑚, 𝑥)

then
4 𝐿.append(𝐿𝑎

𝑗𝑎
);

5 𝑗𝑎++
6 else
7 𝐿.append(𝐿𝑜

𝑗𝑜
);

8 𝑗𝑜++
9 end

10 end
11 return 𝐿

as (0.04, 0.03, 0.02). Greedy places the 0.04Organic first for the total
of 0.04+0.03+0.02 = 0.09. The optimal layout starts with two Ads

and achieves 0.02+0.06+0.04 = 0.12. Greedy’s myopic, slot-by-slot

choice cannot foresee that a slightly worse item now may unlock a

much better one next.

BlockFill approach. We propose a more optimal approach that

would result in an optimal solution for the example above. The

approach considers all possible combinations of ad block lengths

for each decision whether to put an ad and thus also has a linear

complexity of 𝑂 (𝑁𝑚) (with𝑚≤ 4 in practice).

Algorithm 2: BlockFill (𝑚-slot look-ahead)

Input: same inputs as Algorithm 1

Output: merged list 𝐿[1 . . . 𝑁 ]
1 𝑗𝑜 ← 1, 𝑗𝑎 ← 1

2 while 𝑗𝑜 + 𝑗𝑎 ≤ 𝑁 do
3 for 𝑏 ← 0 to𝑚 do

4 𝑈𝑏 ←
𝑏−1∑︁
𝑡=0

𝛿 𝑡
𝑣 𝑢

𝑎
𝑗𝑎+𝑡 +

𝑚−𝑏−1∑︁
𝑡=0

𝛿 𝑏+𝑡𝑣 𝑢𝑜𝑗𝑜+𝑡

5 discard𝑈𝑏 if the block (𝑏, 𝑚−𝑏) violates guardrails
6 end
7 𝑏★← argmax𝑏 𝑈𝑏

8 if 𝑏★ > 0 (can put ads preserving guardrails) then
9 𝐿.append

(
𝐿𝑎 [ 𝑗𝑎 : 𝑗𝑎 + 𝑏★ − 1]

)
10 𝑗𝑎 ← 𝑗𝑎 + 𝑏★
11 else
12 𝐿.append(𝐿𝑜

𝑗𝑜
)

13 𝑗𝑜++
14 end
15 end
16 return 𝐿
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Empirical comparison. We compared two approaches in offline

simulations (not reported for brevity) and observed that Greedy

merge consistently achieves ≥ 99% of BlockFill objective across

guardrail and constraint combinations. The negligible gain does

not justify the added complexity, so we proceeded with Greedy

merge for further simulations and tests. We leave finding the exact

solution for future work.

5 Offline Simulation Study
Offline simulations let us stress-test candidate footprint policies,

select the Lagrange multiplier 𝜆, and pick customer-experience

guardrails without touching live traffic.

5.1 Data & Pre-processing
Raw data. We use a sample of 4M user keyword searches on

Wayfair U.S. traffic for the two weeks before the A/B launch. We

split these searches into the training set (first week) to generate the

footprints and evaluation set (second week). Each user search (e.g.,

"red sofa") yields several hundred ad and organic candidates per

query, each with:

• predicted conversion rate pCVR, same deep learning model ap-

plied to both ads and organic products

• variable contribution dollars 𝑉𝐶𝐷 ,

• for ads only: predicted click-through rate pCTR and cost-per-

click CPC outcome from the advertising auction.

Keyword coverage. We retain and report the results for the evalu-

ation set based only on the keywords that are present in the training

set - this helps us approximate how the cached (batch) footprint

would perform in production. Replaying a cache that is one week

old introduces negligible staleness in practice. For the long tail of

new user searches that are not covered by keyword based batches,

we developed an approach relying on a higher level aggregation

(e.g., product class instead of keyword) and that was not included

in the original test, see Conclusion for further details.

Position-bias correction. Because themodels are position-agnostic,

we down-weight engagement predictions by a slot-specific factor,

e.g., pCVR← pCVR ·𝛿 𝑖
𝑠 with 𝛿𝑠 ∈ (0, 1). Without this adjustment,

bottom-of-page pCTR and pCVR would be overstated more than

2×, distorting the offline projections. Notice that 𝛿 𝑖
𝑠 is the correction

for model bias and would not be needed had the models contained

slot as a feature, while 𝛿 𝑖
𝑣 is an independent discount that captures

user behavior.

5.2 Metrics
For both offline simulations and online tests we track two comple-

mentarymetric groups that are expected to capture both advertising

program growth and overall company goals including user experi-

ence. We do not simulate ROAS and gross revenue, but report those

outcomes in the online test.

Advertising key metrics.

• Ad revenue: R̂ev =
∑
𝑖 𝛿

𝑖
𝑣 · pCTR𝑖 ·CPC𝑖

• Ad clicks: �Clicks = ∑
𝑖 𝛿

𝑖
𝑣 · pCTR𝑖

• Footprint: number of ad slots on a page =
∑
𝑖 𝑦𝑖 (distinct from

impressions because many users do not scroll)

Figure 1: Guardrail trade-off. Each colored curve is the Ad-
Revenue–CVR frontier for a guardrail pair (𝑚, 𝑥); the dashed
line is the static baseline. Stars mark the production policy
(black) and the A/B allocation (orange). Units suppressed for
commercial sensitivity.

Advertising + organic joint metrics.

• CVR: ĈVR = 1

𝑁

∑
𝑖 𝛿

𝑖
𝑣 · pCVR𝑖

• VCD: �VCD =
∑
𝑖 𝛿

𝑖
𝑣 · pCVR𝑖 ·VCD𝑖

5.3 Selecting the policy to test
Guardrail search. For each combination of max ad–block length

𝑚 ∈ {2, 4} and spacing multiplier 𝑥 ∈ {1.5, 2.0} we sweep the La-

grange multiplier 𝜆 and record the resulting Ad-Revenue–vs–CVR

frontier. Figure 1 shows four such frontiers: the looser guardrails

(𝑚=4, 𝑥=1.5) dominate the stricter (𝑚=2, 𝑥=2) alternative across
the entire curve, so we adopt the orange policy for the A/B test

(orange star) with specific 𝜆 value chosen based on the business

trade-off between CVR and ad revenue. Notice this value of 𝜆 is

also high enough to be consistent with the long-term impact of

a generated conversion on company’s long-term VCD (purchases

today stimulate purchases in the future).

Production baseline. The black star marks the live static-footprint

policy (ads fixed in slots 2, 4, 8, 9, 14, 15). Extending that static list

would shift the dashed line up (revenue) and left (lower CVR), but

the incremental gains are far smaller than those available from

dynamic footprints, so we did not pursue larger static layouts.

5.4 Offline simulation: results & trade-offs
In the previous section we used simulations to confirm that we

are more likely to succeed with a dynamic footprint approach and

selected a specific set of guardrails. We now perform additional

simulations to achieve two additional goals: 1) decide whether we
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want to build a real time system vs. using a batch approach and 2)

determine if we want to test a version without VCD.

Table 2: Offline-simulation lifts vs. a static-footprint baseline
(positive = better). RT = real-time ranker, Batch = daily batch
ranker, NoVCD = value function without the VCD term.

RT–VCD RT–NoVCD Batch–VCD Batch–NoVCD

Panel A: Advertising Metrics

Ad revenue 38.7 48.1 38.1 46.9

Ad clicks 39.9 46.0 39.4 45.5

Avg. footprint lift 99.3 104.3 103.6 108.3

Panel B: Advertising + Organic Metrics

CVR 0.3 0.5 - 0.8 - 0.8

VCD 3.0 - 0.6 0.7 - 1.0

Real-time (RT) vs. Batch - Motivation. Algorithms described in

Section 4 determine optimal footprints given data inputs per each

user search. If we want to apply those algorithms as is in production,

we then would need a real time implementation as we will have to

rely on scoring model outputs such as pCTR and pCVR. Unfortu-

nately, real time solutions are usually more complex to implement

in practice as that would require more synchronization between

the ads and organic systems to combine both ads and organic score

inputs inside the footprint system. Real-time solutions can also

increase latency due to both synchronization and the need to fetch

additional inputs such as bids or VCD. Therefore we consider an

alternative, a batch solution in which we precompute footprints for

each keyword, taking the footprint of the median length over all

user searches for that keyword in the past week. Notice that we can

compare the two approaches in offline simulations as the required

inputs are logged in our system per each user search.

Real-time (RT) vs. Batch - Outcome. Table 2 reports the outcome

of our simulation analysis and shows that RT can generate more ad

revenue (+0.6-1.2%), higher CVR (+1.1-1.3%) and VCD (+1.6-2.3%)

while requiring lower ad footprint. While these differences are

important, we decided to implement the first online test using the

Batch approach due to faster time to production and still noticeable

ad revenue opportunity.

Effect of the VCD term. When we include the VCD component

(RT-VCD and Batch-VCD), we observe higher projected VCD (+1.7-

3.6%) but lower ad revenue (-8.8%-9.4%), so we test both the VCD

and no-VCD settings in production. We include the no-VCD version

because of higher ad revenue and we generally expect that ad

revenue simulation predictions would be more accurate (e.g., ad

revenue is based on clicks that are easier to predict due to more

click data).

Ad revenue vs. footprint. Projected ad revenue increases are smaller

than footprint increases - while we can allow ads to take over more

slots, those slots are often at the bottom of the page and so are

viewed and clicked less often by the users.

Reproducibility. All simulations run in Google BigQuery with

the ranking logic expressed as embedded JavaScript UDFs, enabling

end-to-end offline simulation reruns from a single SQL script.

6 Online Experiments
We ran a six-week A/B test onWayfair’s U.S. keyword search traffic,

comparing two batch-computed policies (Batch–VCD and Batch–

NoVCD) with the production static footprint (all variants received

1/3 of traffic randomized by user id hash). All reported lifts are

percentage changes versus baseline.

Additional metric details. In the online A/B results we also report

ROAS (Return on Ad Spend) and gross revenue - these guardrail

metrics were not included in the offline simulations. While we

report impression-level CVR, VCD, and gross revenue metrics in

Panel B, we also confirmed that the results are consistent on page

or user session levels. The online gains mirror the direction of our

offline projections but are modestly smaller, as simulation estimates

do not fully capture serving-time noise and model error. To tighten

this offline–online gap, we are evaluating counterfactual-estimation

approaches such as Nguyen et al. [9] for the future.

Table 3: Online A/B percentage lifts; bold values are signifi-
cant at 𝑝 < 0.05 (two-sided t-test).

Batch–VCD Batch–NoVCD

Panel A: Advertising Metrics

Ad revenue 28.3 35.0
Ad clicks 28.3 31.7
Avg. footprint lift 78.3 81.7
ROAS 7.4 5.9

Panel B: Advertising + Organic Metrics

CVR - 0.7 1.0
VCD 1.2 2.7
Gross revenue 0.4 2.6

Panel C: Long-Term Site-Wide Projections

VCD 0.3 0.6
Gross revenue 0.3 0.6

Win–win lift. Both treatments increased ad revenue, and the

Batch–NoVCD arm additionally produced statistically significant

lifts in page-level CVR, VCD, gross revenue, and ROAS. Prior work

shows that heavy or poorly targeted ad loads can depress engage-

ment and retention [3, 5]. Here we moved from six ads per page

to a still-conservative footprint of average 12 out of 48 slots per

page chosen based on expected common-currency utility under

pCVR guardrails. For some keywords we showed fewer ads than

before (e.g. when ads had much lower pCVR than organic prod-

ucts). The extra ads were often more relevant than the displaced

organic results, consistent with advertisers exploiting keyword-

level gaps to surface high-intent products that organic ranking

misses. Our findings align with recent evidence that carefully al-

located, high-relevance ads can benefit both users and platforms

[11], demonstrating that ad load need not be a zero-sum trade-off

when relevance constraints are enforced.

Batch–NoVCD outperforms the VCD-aware variant. The simpler

Batch–NoVCD arm delivered significantly higher ad clicks, ad

revenue, and page-level CVR/gross revenue, and even showed a

(non-significant) lift in VCD—paradoxically surpassing the variant

that optimizes VCD directly. This underscores a pragmatic lesson:



KDD ’25, August, 2025, Toronto, Canada Kolbin et al.

enriching an objective with extra terms does not guarantee better

business outcomes. A likely culprit is estimation noise: predicting

VCD is harder than predicting clicks or conversions, so errors prop-

agate into the footprint and erode gains. Offline–online gaps of this

sort are well documented in large-scale ad systems [10]. Closing

them will require higher-fidelity VCD models or uncertainty-aware

objectives, which we leave for future work.

Long-term durability. Ad-fatigue can reverse early gains [7], so

we ran both variants through Wayfair’s Long-Term Impact Estima-

tion Platform, which extrapolates effects via the surrogate-index

method of Athey et al. [1]. Using 42 days of experiment data, the

platform projects metrics out to 168 days across the entire site

(i.e., beyond keyword search covered by our experiment). The fore-

casts show positive lifts in both VCD and gross revenue; only the

Batch–NoVCD arm is statistically significant, but the direction is

consistent for both. Hence the short-run revenue uplift is unlikely

to be clawed back by latent ad-fatigue and is expected to translate

into durable profit.

7 Conclusion and Future Work
Conclusion. Wedeployed a unified–valuation "common currency"

ranker that prices ads and organics in the same profit-based units,

then merges the two lists via a one-pass greedy algorithm. We

evaluated both real time and batch version and demonstrated the

relative efficiency of a simpler batch approach in offline simulations,

providing a path to apply our approach under a variety of ad and

organic system designs (e.g., whether or not it’s easy to connect ads

and organic score inputs in real time). In production, the system

allowed scaling footprint expansion and raised ad revenue by 35 %

while also lifting page-level CVR and long-term profit, providing

another example that carefully chosen ads can break a common

revenue–UX trade-off.

Future work. Next steps fall into four tracks. (1) Broader reuse:

our batch framework already supports footprints for unseen key-

words by applying footprints fitted for predicted class of the user

search and can further be applied in other context such as carousels

in product pages based on anchor product. (2) Real time ranking:

offline experiments suggest additional CVR and VCD gains from

recomputing footprints on the fly; implementing this low-latency

pipeline is our main engineering goal. (3) Stronger profit signals: we

can try refining our VCD modeling so that profitability can become

a direct optimization objective. (4) Developing more personalized

ad supply focusing on user preferences for ads (e.g., such as in [12]).
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