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Abstract
In the rapidly evolving landscape of digital information retrieval

and online advertising, response predictor models have become

indispensable tools for understanding user behavior and optimiz-

ing content delivery. These models aim to estimate the likelihood

of a user response on a displayed item, such as a search result or

advertisement, thereby enabling more efficient and targeted alloca-

tion strategies. However, the accuracy and reliability of response

predictor models are significantly challenged by position bias – a

phenomenon where the position of an item in a list influences the

probability of user responding to it though either click, conversion,

etc., independent of its relevance or quality.

This paper introduces a novel downsampling method designed to

mitigate the effects of position bias while addressing the challenges

posed by large-scale interaction data and resource constraints. Our

approach preserves all positive samples and filters out a substan-

tial amount of poor negative samples, maintaining the integrity of

valuable information necessary for accurate predictions. By leverag-

ing the insight that item response probabilities should be uniform

across positions in the absence of bias, we propose a random filter-

ing strategy that optimizes the preservation of valuable interaction

data.

We demonstrate the effectiveness of our method through ex-

tensive offline and online experiments, showing that it not only

complements existing bias mitigation techniques but also enhances

model accuracy in resource-constrained environments. Our find-

ings suggest that integrating this downsampling method with new

training strategies leads to improved prediction performance.
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1 Introduction
In the dynamic realm of digital information retrieval and online ad-

vertising, response prediction models [1–3, 5, 6, 6, 9–13, 16, 17] have

become essential for deciphering user interactions and enhancing

content delivery strategies. These models estimate the likelihood of

a user engaging with an item – whether through a click, conversion,

comment, or other feedback – enabling more precise and effective

marketing decisions. However, the presence of position bias – a

tendency for items at the top of a list to receive more responses

regardless of their actual relevance – poses a significant challenge

to the accuracy and reliability of these models [5, 13, 17, 17].

Position bias occurs primarily because users naturally focus on

items at the top of a list, resulting in a higher response probability

for these items compared to those further down [6, 10]. This bias

can distort the training data for response prediction models, causing

the predictions to reflect patterns of user attention rather than the

relevance of the true item. Therefore, addressing position bias is

critical for improving the predictive accuracy and fairness of these

models.

To counteract position bias, researchers have developed various

techniques [5, 17]. Propensity scoring methods adjust click data by

estimating the likelihood of clicks based on item position. Counter-

factual learning frameworks infer click probabilities in scenarios

devoid of position bias. Additionally, unbiased learning-to-rank

algorithms incorporate position bias correction directly into the

training process, enhancing the model’s ability to generalize to

unbiased click scenarios. Another research approach involves utiliz-

ing position information as a feature in modeling, or incorporating

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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related data, such as the logit of the click-through rate for a position,

into the training process via the base margin vector, which provides

prior knowledge for model training [4].

High-quality response prediction models heavily rely on the

user–item interaction data. The most valuable data includes pos-

itive samples (i.e. clicks or conversion) and good or high-quality

negative samples (items seen but skipped and thus not clicked). The

abundance of interaction data on popular recommender, search,

and online advertising platforms poses a challenge, as resource con-

straints (e.g., limited RAM, CPU, GPU, or latency) make it difficult

to process these large volumes. A practical solution is to randomly

sample a sufficient training dataset from the raw data. However,

this can result in the loss of valuable information, particularly posi-

tive and high-quality negative samples. This challenge motivates

the search for solutions that preserve valuable information while

allowing for smaller, resource-efficient training datasets. In this pa-

per, we introduce a novel downsampling method that significantly

reduces the size of the training dataset while preserving all positive

samples and filtering out a substantial amount of weak negative

samples (items displayed but not seen and not clicked, typically

in lower slots), with minimal loss of valuable negative samples.

This method effectively addresses position bias and complements

existing techniques. We also propose several training strategies that

yield slight improvements in model accuracy over current methods.

Our approach is based on the observation that, on platforms

with a sufficient number of items, the top items displayed to users

are generally of similar quality standard. In the absence of position

bias, the click-through rates across all positions would be equal.

Therefore, we aim to formulate a strategy for randomly filtering out

negative samples to equalize the post-downsampling click-through

rates across positions to that of position (let say) 1, which is not

affected by position bias.

We present a range of experimental results to support our find-

ings.

This paper is organized as follows: Section 2 reviews position bias

models and existing mitigation approaches. Section 3 details our

downsamplingmethod. Section 4 introduces new training strategies

based on our downsampling method. We present experimental

results in Section 5 and conclude in Section 6.

2 Background
2.1 Setup
In response to a user visit or specific user query, online platforms

surface a number of items to users, optimized for user engagement,

thereby enhancing it’s likelihood and optimizing the utilization of

digital real estate. This real estate comprises of positions starting

from first which typically gains the most traction [17]. The online

platforms meticulously track user behavior, including metrics such

as clicks and purchases, for subsequent analysis aimed at enhanc-

ing the user’s shopping experience by showing the most relevant

and impactful items on high valued positions. In the context of

click prediction modeling for instance, researchers compile data on

user clicks, along with associated user and item feature informa-

tion, to construct predictive models. The objective is to leverage

the comprehensive dataset to train the model, ensuring no critical

information regarding user-item interactions is overlooked. Conse-

quently, multi-position data is utilized in the training phase of the

model. However, to evaluate the model’s effectiveness, researchers

may restrict the test dataset to data collected from positions that

consistently capture user attention, regardless of the items dis-

played. Frequently, only data from position–1 may be considered

as the test dataset.

2.2 Position Bias Model
We consider the following widely accepted model to address the

position bias issue. The position bias model posits that the observed

click, represented as a Bernoulli variable 𝐶 , is contingent upon

two latent Bernoulli variables: 𝐸 and 𝑅. Here, 𝐸 signifies the event

where a user examines a document at a specific position 𝑘 , while

𝑅 denotes the event where a document 𝑑 is relevant to a query 𝑞.

The model is mathematically expressed as:

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘) = 𝑃 (𝐸 = 1 | 𝑘) · 𝑃 (𝑅 = 1 | 𝑞, 𝑑),
where 𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘) represents the probability of a click on

document 𝑑 displayed at position 𝑘 given query 𝑞. 𝑃 (𝐸 = 1 | 𝑘)
is the probability of examining position 𝑘 , and 𝑃 (𝑅 = 1 | 𝑞, 𝑑)
is the probability that document 𝑑 is relevant to query 𝑞. This

model assumes that examination is solely dependent on position,

while relevance is dependent only on the query and document.

For simplicity, we define the notations: 𝜃𝑘 = 𝑃 (𝐸 = 1 | 𝑘) and
𝛾𝑞,𝑑 = 𝑃 (𝑅 = 1 | 𝑞, 𝑑).

In scenarios where 𝐸 = 1, the relevance 𝑅 is fully observed

through 𝐶 . Conversely, when 𝐸 = 0, 𝐶 is invariably 0, leaving

the relevance of the document unknown. A clicked document 𝑖

indicates both examination and relevance.

In this study, the primary objective of multi-position click pre-

diction modeling is to develop a model that can accurately predict

the relevance of a given document (𝑑) for a query 𝑞 at position 1 (i.e.

𝑘 = 1) with high accuracy based on the information of all collected

clicks with users and documents features. using information from

all collected clicks and user and document features. We outline

some common approaches to tackle this challenge.

2.3 Naïve Approach
The most straightforward approach assumes that position bias is

not a concern, meaning users examine all positions before deciding

whether to click. In this scenario, 𝜃𝑘 = 𝑃 (𝐸 = 1 | 𝑘) is always equal
to 1 for every position. As a result, we train a click predictor model

using all available training data points. However, this method may

result in lower model accuracy because it does not account for the

negative effects of position bias. In practice, the model tends to

generate lower predicted click-through rates (CTR), represented

as 𝛾𝑞,𝑑 = 𝑃 (𝑅 = 1 | 𝑞, 𝑑), due to an inflated number of negative

samples.

2.4 Position Information 𝑘 as a Feature
In this approach [17], the position bias 𝜃𝑘 and relevancy𝛾𝑞,𝑑 are not

treated separately. Instead, complex models like XGBoost [4] are

utilized to address the issue of position bias by incorporating posi-

tion position (i.e. parameter 𝑘) as a feature alongside other user and

item features. This allows the model to distinguish between clicks
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driven by content relevance and those influenced by positional

prominence. By doing so, this approach mitigates bias, refines ad

placement strategies, and enhances model interpretability by clari-

fying how position affects click probabilities. As a result, it leads to

more accurate predictions and optimized advertising strategies.

2.5 Base Margin
In multi-position click prediction modeling, base margins in Gradi-

ent Boosting implementations such as XGBoost [4] serve as initial

prediction scores that can incorporate prior knowledge, such as

historical click-through rates (CTR) or outputs from other models.

To tackle position bias via base margin, in practice we set it’s value

as the logit of position 1’s CTR, i.e.

logit(𝑝𝑘 ) = log

(
𝑝𝑘

1 − 𝑝𝑘

)
,

where 𝑝𝑘 is the 𝑘-th position CTR.

This initialization is crucial for capturing complex interdepen-

dencies between positions and adjusting for position biases, such as

higher click probabilities for top positions. By setting appropriate

base margins, the model can start closer to expected outcomes, en-

hancing convergence speed and accuracy. Specfically, for XGBoost,

when used for classification tasks, typically optimizes a logistic

loss function. Providing the base margin in log odds aligns with

this loss function, potentially leading to better convergence and

performance.

In practice, this approach outperforms using position informa-

tion k as a feature because it does not rely on positions being in

consecutive order. When positions are not sequential, the model’s

performance can suffer, whereas position-based margin informa-

tion does not require strict positional correlation, thus maintaining

effectiveness.

2.6 Expectation-Maximization (EM)
In [17], the authors introduce an innovative method utilizing the

Expectation-Maximization (EM) algorithm to precisely estimate

position bias, denoted as 𝜃𝑘 = 𝑃 (𝐸 = 1 | 𝑘), and incorporate it into

a multi-position click predictor model. The primary contribution

of this work is the creation of an unbiased learning-to-rank frame-

work that successfully distinguishes genuine relevance signals from

position bias present in click data. By leveraging the EM algorithm,

the model progressively enhances its estimations of both user pref-

erences and position bias, thereby enabling more accurate ranking

predictions.

The EM approach outlined in the paper requires a minimum of

two training cycles (see Algorithm 1 Regression-based EM), with

the outer cycle dedicated to EM and the inner cycle focused on

comprehensivemodel training. Consequently, this method demands

considerably more training effort compared to techniques based

on base margin or position information (refer to Section 2.4). The

paper illustrates that thismethod is less effective than those utilizing

position information. Given its practicality limitations and lower

effectiveness relative to position information-based methods, this

approach is included here solely for the sake of completeness in

the review.

Due to page constraints, we present two additional, less practical

approaches in Appendix A.

3 Effective Position Debiasing Methods
3.1 Motivation
Typically, designers aim to capture all essential interactions be-

tween users and items in the training datasets, leading to the use

of multi-position click predictor modeling despite position bias

challenges. However, this objective becomes less feasible as the

training data volume increases. Designers must allocate more re-

sources, such as RAM, CPU, GPU, and time, to train the model, or

alternatively, they may resort to randomly sampling a sufficient

subset of the data if resources are constrained. Expanding train-

ing resources demands greater investment, which may not always

be feasible. Consequently, random downsampling becomes a more

practical and favored option, though it results in the loss of valuable

interaction data between users and items, which is undesirable in

many cases. This situation motivates us to develop a new training

method capable of delivering strong modeling performance with a

significantly smaller training dataset, while preserving all crucial

information from the original dataset.

3.2 Key Idea
As discussed earlier, users are likely to skip ads displayed in lower

positions, resulting in a large number of negative samples (i.e., sam-

ples with a click value of 0) that offer little insight into user-ad

interaction. This prompts us to eliminate these negative samples.

However, we lack an effective method to differentiate valuable neg-

ative samples (i.e., those skipped after user consideration) from the

rest. Consequently, our best approach is to randomly select a suffi-

cient number of negative samples, along with all positive samples

(those with a click value of 1), to form the training dataset. Since

downsampling is applied only to negative samples, all valuable

positive samples are retained, given that the number of positive

samples is significantly smaller than negative ones in online adver-

tising datasets. This suggests that our approach to downsampling

negative samples is optimal for preserving information.

Our proposed strategy for downsampling negative samples is

based on the following assumptions:

Assumption 1. Users consistently examine the ads displayed in
position 1. In other words, position 1 is free from position bias.

Assumption 1 is considered mild because users are naturally

inclined to view ads in position 1 due to its prominent visual place-

ment.

Assumption 2. If all ads displayed across all positions are of
average quality and there is no position bias, then the click-through
rates for all positions are equal.

Assumption 2 is more comprehensive than Assumption 1 be-

cause ads are ranked by their quality. However, it becomes more

realistic when the number of ads far exceeds the number of avail-

able positions, and when the advertising platforms are well-known,

attracting numerous high-quality, competitive advertisers. Addi-

tionally, Assumption 2 is more acceptable when ads are not ranked

solely by relevance, such as in systems using generalized second
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price auctions [8], where ads are ranked based on a combination of

their bid value 𝑏 and their predicted click-through rate score 𝑝𝐶𝑇𝑅,

i.e. 𝑝𝐶𝑇𝑅 × 𝑏.
These two assumptions lead us to randomly select a sufficient

number of negative samples at each position so that, combined with

their positive samples, the click-through rates (CTRs) for each posi-

tion match the CTR of position 1. The following theorem outlines

our proposed downsampling algorithm.

Theorem 3.1. Let 𝜌𝑘 represent the click-through rate of position 𝑘 .
For each negative sample at position 𝑘 , if it is sampled with probability
𝑑𝑟𝑘 , where

𝑑𝑟𝑘 =
𝜌𝑘

1 − 𝜌𝑘
× 1 − 𝜌1

𝜌1
,

then all positions will have the same click-through rates, equal to 𝜌1.

Proof. We consider position 𝑘 and begin by initializing several

key variables:

• 𝑎 is set to the number of positive samples, which is equivalent

to the number of clicks.

• 𝑏 represents the number of remaining negative samples after

sampling.

• 𝑐 denotes the number of removed negative samples after

sampling.

• The total number of negative samples𝑛 is defined as𝑛 = 𝑏+𝑐 .
• The total number of impressions 𝑖 is calculated as 𝑖 = 𝑎 +𝑏 +
𝑐 = 𝑎 + 𝑛.

We first calculate number of remaining negative samples 𝑏 based

on the number of positive samples 𝑎 and position-1 CTR 𝜌1. Our

goal is to make the CTR of position 𝑘 after sampling equal to 𝜌1 or

we want to have 𝑎/(𝑎 + 𝑏) = 𝜌1. This gives

𝑏 =
𝑎 · (1 − 𝜌1)

𝜌1
.

The downsampling rate, 𝑑𝑟𝑘 , is calculated to adjust the distribu-

tion of negative samples relative to positive samples. The formula

for 𝑑𝑟𝑘 is expressed in several equivalent forms:

𝑑𝑟𝑘 =
𝑏

𝑏 + 𝑐 =
𝑏

𝑛
=

𝑏

𝑖 − 𝑎 ,

=
𝑎

𝑖 − 𝑎 ·
1 − 𝜌1
𝜌1

=
𝑎/𝑖

1 − 𝑎/𝑖 ·
1 − 𝜌1
𝜌1

,

=
𝜌𝑘

1 − 𝜌𝑘
· 1 − 𝜌1

𝜌1
.

□

This rate aids in balancing the dataset by effectively reducing

the impact of position bias, allowing the learning model to focus

on more relevant data.

In practice, the position CTRs, denoted as 𝜌𝑘s, are calculated

by randomly sampling a sufficient number of training data points.

They are determined using the formula

𝜌𝑘 =
total number of clicks at position k

total number of impressions at position k

.

This approach allows us to efficiently compute 𝑑𝑟𝑘 s values with-

out needing to use the entire raw dataset.

Given a raw dataset D, a downsampled training dataset S, con-
structed using our proposed method, is outlined in Algorithm 1.

Algorithm 1 Negative Downsampling Method

Require: Position CTRs 𝜌𝑘 , 𝑘 = 1, . . . , 𝑛 and raw training dataset

D
Ensure: Training dataset S
𝑆 ← empty set

for each data point 𝑑 in the raw training dataset D do
if 𝑑 is a positive sample then
S ← S ∪ {𝑑}

else
if 𝑑 is a negative sample then

if 𝑑 is at position 𝑘 then
𝑅 ← Random(0, 1)
if 𝑅 < 𝑑𝑟𝑘 then
S ← S ∪ {𝑑}

end if
end if

end if
end if

end for

Initially, an empty training dataset S is established. We then pro-

ceed to examine each data point in the raw dataset D individually.

According to Algorithm 1, if a data point is a positive sample at

position 𝑘 , it is added to the training dataset S with a probability of

1. If it is not a positive sample, it is included in S with a probability

of 𝑑𝑟𝑘 .

Theorem 3.2. Let 𝜌1 and 𝑎𝑘 represent the click-through rate of
position 1 and the number of positive samples at position 𝑘 . The num-
ber of data points in downsampled training dataset S after applying
Algorithm 1 is equal to

1

𝜌1
(
∑︁
𝑘

𝑎𝑘 ).

Proof. The proof is derived straightforward based on the proof

of Theorem 3.1, i.e. the total number of data points in S is equal to

the sum of all positive samples 𝑎𝑘 and remaining negative samples

𝑏𝑘 over all positions 𝑘 and the fact 𝑏𝑘 = 𝑎𝑘
1−𝜌1
𝜌1

. □

In practice, due to the impact of position bias, the lower positions

have a smaller number of positive samples. As a result, the number

of data points in the training dataset S is significantly less than in

the raw dataset D.

4 Click Predictor Modeling with new
Downsampling Method

In the previous section, we introduced a novel downsampling

method specifically targeting negative samples. The primary ob-

jective of this method is to equalize the position CTRs across all

positions to match that of position 1, thereby mitigating the nega-

tive effects of position bias. Once the downsampled training dataset

S is obtained, we propose several new model training methods.
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Position 1 2 3 4 5 6 7 8 9 10 11 12 13

𝑑𝑟𝑘 1.0 0.70 0.54 0.46 0.17 0.15 0.14 0.09 0.08 0.076 0.073 0.059 0.059

Table 1: Downsampling Rates 𝑑𝑟𝑘 for Different Positions

Position-independent downsampling (PID). This is the sim-

plest approach, where we treat all data points as if they were sam-

pled from position 1. This combined dataset serves as the training

data for any existing training methods we prefer to use.

Position-dependent downsampling (PDD). This method is

based on the observation that, after downsampling, while the posi-

tion CTRs are equalized, the true CTRs of items at different positions

are not necessarily equivalent. Items displayed in lower positions

that receive clicks likely have a higher true CTR than those in

higher positions. Therefore, we do not treat all data points as if they

were sampled from position 1. Instead, we handle them separately

to help models learn the true CTR of items more accurately. To

achieve this, we incorporate the position information 𝑘 as a feature.

5 Experiments

AUC Logloss Bias
Ex. 1 (naïve training) 0.00000 0.00000 0.00000

Ex. 2 (base margin XGB) 0.01349 -0.00799 -0.67149

Ex. 3 (position 𝑘 as a feature) 0.01547 -0.00855 -0.60399

Ex. 4 (PID) 0.01354 -0.00807 -0.65636

Ex. 5 (PDD) 0.01575 -0.00859 -0.60500

Table 2: Comparative analysis of performance models.

Note: Performance metrics adjusted by subtracting the values of

Experiment 1 from each experiment. This provides a differential

view of the performance changes across experiments.

5.1 Datasets
We utilize datasets from a prominent online marketplace where

hundreds of millions of buyers and sellers engage daily. This e-

commerce platform offers an extensive array of products catering

to a wide range of preferences and needs, along with programs

that enable sellers to advertise their items. As a result, the platform

must choose relevant ads or products from billions of possibili-

ties to present to users. After identifying relevant items, they are

ranked based on factors like click-through rate (CTR) and bid value.

Developing effective click prediction models for item ranking is

essential. The ranking process employs comprehensive user and

item features for model training, with click values used as labels

to build the click predictor. All user-item interactions are logged

for system analysis, leading to a vast amount of data due to high

levels of user and ad engagement. This creates opportunities for

designers to craft robust click predictor models, but also introduces

challenges, particularly in extracting valuable insights from data

points with click values of 1 or from all positions, given constraints

such as RAM, CPU, GPU, and time.

In our case, we gather a dataset from two weeks of platform logs
from an ads program that details user and ad interactions, referred

to as the raw datasetD. We utilize a one-day log from position 1 as

our testing datasetT . The data points inD are derived from specific

positions, with 13 positions considered for click predictor modeling.

Each data point includes user and item features for training, with

click values assigned as labels. Due to data publication restrictions

at the e-commerce platform, the statistics are not published but

they show that different positions exhibit varying behaviors.

5.2 Metrics and Offline Experiments
To measure the accuracy of click predictor models for a given

test dataset, The Receiver Operating Characteristic curve (ROC

Curve) [7] or ROC-AUC, Logloss [15] and Bias are in use. In the

context of click prediction, bias metric quantifies the degree to

which the predicted probabilities deviate from the observed click

rates. Specifically, the metric is defined as follows.

Bias =

𝑁∑︁
𝑖=1

𝑝𝑖/
𝑁∑︁
𝑖=1

𝑦𝑖

where 𝑦𝑖 is the actual label (0 or 1), 𝑝𝑖 is the predicted probability,

and 𝑁 is the number of samples.

We study the impact of our new proposed negative downsam-

pling methods to the click predictor modellings. It is important to

note that our approach for click predictors can be directly applied

to sale predictors. XGBoost models [4] are used as main models.

We implement the following offline experiments.

• Experiment 1: The unaltered training dataset, D, is used

without incorporating position information 𝑘 as a feature.

This serves as the baseline for model performance evaluation.

• Experiment 2: Similar to Experiment 1, the dataset D is

employed without position information 𝑘 . However, position

CTR logit values are utilized as basemargin values, providing

insight into the effectiveness of base margin XGB.

• Experiment 3: The dataset D is used with position infor-

mation 𝑘 included as a feature, assessing the performance of

XGB when position information is considered.

• Experiment 4: The training datasetD undergoes downsam-

pling using our proposed method, applying the 𝑑𝑟𝑘 as de-

tailed in Table 1. Subsequently, position-independent down-

sampling (PID) is applied for modeling.

• Experiment 5: Similar to Experiment 4, the dataset D is

downsampled using the𝑑𝑟𝑘 in Table 1, but position-dependent

downsampling (PDD) is employed, incorporating position

information 𝑘 as a feature.

The outcomes of all experiments are detailed in Table 2. Due to

data publication restrictions of the platform, we have obfuscated

the results by adjusting the performance metrics through subtrac-

tion of the values from Experiment 1 for each experiment. This

approach offers a differential perspective on the performance vari-

ations across the experiments. Higher AUC values indicate better

ranking algorithms, whereas lower logloss and bias metrics suggest

improved ranking performance.

Note: Given the page constraints of the paper, we have elabo-

rated on the significance of the improvements in AUC and Logloss

in the Appendix, as they may seem minor due to the nature of the

problem. B.
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5.3 Online tests
We carried out an AB test to demonstrate the effectiveness of our

new downsampling method. Two XGB models were trained: one

using the base margin method and the other with our new down-

sampling technique position-dependent downsampling (PDD). The

base margin method is currently utilized because ads are displayed

in non-continuous positions, making it the most practical solu-

tion for addressing position bias issues. The AB test spanned three

weeks and consisted of two phases. In the first phase, data was

collected over one week to build calibration for both models. The

second phase ran for two weeks to compare the performance of

the two models. The base margin XGB model served as the Con-

trol, while the downsampling-based XGB model was the Treatment.

Both models received equal traffic during the AB test. Calibration

of XGB model scores was necessary because we discovered that

scores from the base margin XGB model were biased, despite the

bias metric being favorable in offline experiments. We suspect this

bias is due to the limitations of the base margin method in ad-

dressing position bias issues. To ensure the calibrated model scores

of the base margin XGB model did not negatively impact system

performance, we implemented calibration using the Isotonic Re-

gression method [14]. The findings from the AB test, which assess

the enhancement of the downsampling model compared to the base

margin model, are presented in Table 3. Metrics such as ROC-AUC,

Logloss, Bias, Click-Through Rate (CTR), Sale Through Rate (STR),

and Gross Merchandise Bought (GMB) are included. A notable

difference was observed between offline and online results. This

discrepancy can be attributed to the conventional offline approach

used in constructing XGB models, which may not fully account for

the complex and dynamic nature of the entire e-commerce platform.

Thus, this divergence is understandable.

AUC Logloss Bias CTR STR GMB
+2.3% -3.8% +77.84% +7.72% +14.5% +18.10%

Table 3: Relative Enhancement of Downsampling PDD XGB
Model Compared to Base Margin XGB Model (95% Statistical
Confidence)

A significant discovery highlighting the effectiveness of our

novel downsampling method in tackling position bias is the bias

metric of the model scores, which remains nearly optimal both

before and after calibration due to our deliberate application of

bias correction on the training dataset. Essentially, we enforce a

constraint on bias within the training dataset. Before calibration,

the scores are around 1.032, improving to 1.007 afterward, nearing

the ideal bias metric. This is notably different from the base margin

model scores, which are 1.337 before calibration and 1.035 after. In

this method, we depend on an algorithm to address bias issues, but

this algorithmic approach falters when encountering new, unseen

items. Moreover, incorporating position 𝑘 as a feature without the

downsampling technique (as in Experiment 3) shows promising

AUC improvements in offline analysis, yet it still faces bias chal-

lenges similar to those found in the base margin approach. Thus, by

combining the new downsampling method with position 𝑘 as a fea-

ture, we effectively alleviate position bias issues, as demonstrated

by enhancements in both bias metrics and ranking performance,

reflected through the ROC-AUC metric, in both offline and online

environments.

6 Conclusion
This paper tackles the crucial issue of position bias in click predictor

models. Our innovative downsampling method improves efficiency

by reducing the training dataset size, preserving all positive samples,

and eliminating many poor negative samples linked to position bias.

This enhances training efficiency under resource constraints while

retaining essential information for accurate model predictions.
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A Background
A.1 Randomization
A common approach to mitigating position bias in recommender

systems is to randomly shuffle item positions for a small percentage

of user traffic and trainmodels exclusively on this data [9, 16]. Imple-

mentations of this approach include complete shuffling, 𝑅𝑎𝑛𝑑𝑇𝑜𝑝𝑁

where rank 1 and rank 𝑝 are randomly swapped half the time [11],

or𝑅𝑎𝑛𝑑𝑃𝑎𝑖𝑟 where adjacent pairs are randomly shuffled [17].While

this method directly addresses position bias, it comes at a signif-

icant cost to the platform despite attempts at developing various

strategies as it can negatively impact user experience and may con-

flict with allocation policies, such as those used in ad systems. Due

to these limitations, we do not consider randomization a viable

strategy for addressing position bias in this study.

A.2 Inverse Propensity Weighting
Addressing position bias can be achieved by incorporating position

information during model training using inverse propensity weight-

ing (IPW), which effectively shifts the data distribution toward a

position-agnostic distribution [11, 17]. Naive implementations in

this approach use an item’s position 𝑝 as input and include: (1) ab-

solute positioning:𝑤 = 1+𝑝 , (2) log transformation:𝑤 = log(𝛽 +𝑝),
and (3) ratio-based weighting:𝑤 = 1 − 1

𝛼+𝑝 , while more advanced

approaches for IPW are discussed in Section 2.6. However, in our

experiments, these strategies led to subpar model performance, and

therefore, we do not report their results.

B Significance of Enhancing Model
Performance

Although the improvements in AUC and Logloss observed in Table 2

may appear modest, they are of considerable practical importance

due to the use of original, comprehensive datasets that are highly

imbalanced with respect to clicks. Typically, non-click impressions

vastly outnumber those with click values, often by a factor of 20

to 100, depending on the slot position. This imbalance necessitates

substantial effort to accurately predict impressions with a click

value of 1, making even slight gains in AUC and Logloss noteworthy.

To substantiate this point, we conducted three experiments un-

der identical conditions, including the same training, validation,

and test datasets, setup parameters, and feature sets. We trained

three XGB models with depths of 5 (experiment 1), 10 (experiment

2), and 15 (experiment 3), each with 500 trees. The results of these

experiments are detailed in Table 4. According to the design of XGB

models, increasing the depth exponentially enhances the models’

capacity, as evidenced by the increase in model sizes. However,

the observed improvements in AUC, Logloss, and Bias remain rel-

atively small. This is understandable given the complex nature of

the datasets, as previously explained.

Depth AUC Logloss Bias Model Size (Mb)
05 0.000000 0.000000 0.000000 1.9

10 0.000725 -0.000010 -0.007141 24.9

15 0.002273 -0.000233 -0.007849 112.0

Table 4: Differences in performancemetrics formodel depths
10 and 15 compared to depth 5. The differences are calculated
by subtracting the metrics of depth 5 from those of depths
10 and 15. A positive difference in AUC indicates improved
performance, while a negative difference in Logloss and Bias
suggests better performance.
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