SIDE: Semantic ID Embedding for effective learning from
sequences

Dinesh Ramasamy, Shakti Kumar, Chris Cadonic
Jiaxin Yang, Sohini Roychowdhury, Esam Abdel Rhman, Srihari Reddy
{dineshr,shaktik,ccadonic,jiaxiny,sroychowdhury1,esam,sriharir}@meta.com
Meta Platforms, Inc.

Abstract

Sequence-based recommendations models are driving the state-of-
the-art for industrial ad-recommendation systems. Such systems
typically deal with user histories or sequence lengths ranging in
the order of O(10%) to O(10*) events. While adding embeddings
at this scale is manageable in pre-trained models, incorporating
them into real-time prediction models is challenging due to both
storage and inference costs. To address this scaling challenge, we
propose a novel approach that leverages vector quantization (VQ)
to inject a compact Semantic ID (SID) as input to the recommen-
dation models instead of a collection of embeddings. Our method
builds on recent works of SIDs by introducing three key innova-
tions: (i) a multi-task VQ-VAE framework, called VQ fusion that
fuses multiple content embeddings and categorical predictions into
a single Semantic ID; (ii) a parameter-free, highly granular SID-
to-embedding conversion technique, called SIDE, that is validated
with two content embedding collections, thereby eliminating the
need for a large parameterized lookup table; and (iii) a novel quan-
tization method called Discrete-PCA (DPCA) which generalizes and
enhances residual quantization techniques. The proposed enhance-
ments when applied to a large-scale industrial ads-recommendation
system achieves 2.4X improvement in normalized entropy (NE)
gain and 3X reduction in data footprint compared to traditional SID
methods.

Keywords

Vector quantization, fusion, encoding, decoder, ads-ranking system

ACM Reference Format:

Dinesh Ramasamy, Shakti Kumar, Chris Cadonic and Jiaxin Yang, Sohini
Roychowdhury, Esam Abdel Rhman, Srihari Reddy. 2025. SIDE: Semantic ID
Embedding for effective learning from sequences. In Proceedings of AdKDD
2025 (AdKDD ’25, Toronto, Canada). ACM, New York, NY, USA, 6 pages.

1 Introduction

Industrial ads-ranking systems incorporate diverse signals from
multiple sources to accurately predict user-engagement towards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AdKDD °25, Toronto, Canada, 2025

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM

Straight-through
gradients

Embedding1 [—

Embedding2 |——

Discretize
Op
Latent
codeword

Latent vector

Categorical 1 ——>

Figure 1: The proposed fusion VQ-VAE setup (encoder por-
tion). An unmixing decoder architecture (symmetric to mix-
ing) is used to train the encoder.

specific content. Traditionally, these systems have relied on ag-
gregation based signals, which summarize user behavior and ad-
attributes into coarse grained features. However, this approach
has limitations, as it fails to capture the nuances of user interac-
tions over time. Recent works such as in [5]- [12] demonstrate the
importance of long sequence user behavior for improvement in
click-through-rate (CTR) prediction by leveraging O(10%) to O(10%)
events. In such systems, there is a need to enrich user-engagement
signals / events for improved prediction using content engagement
signals, which typically are in the form of embeddings. In this work,
we address two major challenges while using quantized SIDs to
enhance user-ad engagement predictions: (1) How can we perform
VQ efficiently when we have a plethora of content signals (em-
beddings and categorical predictions) as is the case in industrial
ads-ranking systems, and (2) How can we structure VQ outputs to
utilize them efficiently along with improved ranking performance
of downstream models? To address these questions, we propose a
novel multi-input vector-quantized variational auto-encoder (VQ-
VAE) (called VQ fusion), as shown in Figure 1, which addresses the
gap in existing SID approaches that require large volumes of data
to relearn embeddings for different SID n-grams or tokens. The pro-
posed VQ fusion method consists of an encoder-network that takes
different content signals as input and produces a shared latent repre-
sentation that is quantized and passed through a pseudo-symmetric
decoder network; thereby enabling reconstruction of the different
content signals. Thus, the proposed structured code-books avoid
relearning the ID-to-codeword mappings and significantly reduce
the number of parameters and memory required in ads-ranking.
This paper makes three major contributions. First, we propose
a novel vector quantization method based on Residual Quantiza-
tion called Discrete PCA (DPCA). Second, we detail a method for
fusing multiple embedding and categorical signals into a single
Semantic ID which we call VQ-fusion, thus drastically reducing the
data storage cost. Third, we introduce a new usage of Finite Scalar



AdKDD ’25, Toronto, Canada, August 04, 2025

Quantization (FSQ[11]) and the newly proposed DPCA methods
to improve ranking outcomes using the so-called SIDE property,
which stands for the ability to convert SIDs to latent embeddings
in an embedding table free fashion. We demonstrate significant
gains in ranking metrics (at least 2.4X gain in normalized entropy)
and the total return on investment (at least 7.4x Rol) compared to
existing approaches in an industrial ads-ranking setting.

2 Related Work

Scalar quantization [11] traditionally involves quantizing each di-
mension of a vector independently using a scalar codebook, which
can be static (examples are int4 and float16 quantization which
use 4 and 16 bits per dimension, respectively). A class of compres-
sion techniques involves finding a mapping to a lower dimensional
subspace so that “most” of the information content in the embed-
ding is preserved and the PCA method identifies the optimal lin-
ear mapping when the loss is euclidean. Vector quantization (VQ)
started off with the now ubiquitous k-means clustering algorithm
that can be extended in two orthogonal ways: (i) Residual k-means
clustering which involves clustering the residuals to create a hierar-
chy of codewords and (ii) Product Quantization [6], which involves
using parallel k-means algorithms on a subset of dimensions and
is considered as a hybrid between scalar and vector quantization
algorithms.

Another clustering technique is called Iterative-Quantization
(ITQ, [4]). This involves using a linear transformation to map em-
beddings into the latent space where they are quantized using a
binary {—1, 1} codebook. Since the transformations are done in par-
allel (matrix multiplication), we classify this as a form of product
quantization clubbed with auto-encoder methods. A similar auto-
encoder with scalar (binary) quantization setup called Lookup-Free
Quantizer (LFQ, [2]) was used recently for video generation. Others
have proposed Finite Scalar Quantization (FSQ, [11]) which extends
LFQ by allowing for more buckets per dimension. One can com-
bine VQ based methods (e.g., k-means) with auto-encoder setup as
presented in the paper on RQ-VAE([8] that improves RQ’s ability to
learn hierarchical structure by adding structured quantizer dropout,
as is shown in the proposed work.

Recently there has been lot of interest in extreme scalar quanti-
zation for LLMs like 1.58-bit LLM [10]. We draw inspiration from
this work and use a ternary {—1,0, 1} scalar codebok as a universal
codebook for our proposed DPCA method. In terms of applications
of VQ-techniques to ad-ranking systems like those presented in [3],
the recent work on using RQ for defining SIDs[1] and the work on
generative retrieval [13] stand out. Both these papers use n-grams of
RQ codewords as SIDs and utilize these SIDs as categorical features,
thereby relying largely on embedding tables. We use this approach
and more traditional k-means as baselines in our experiments.

3 Vector Quantization Method

In this section, we define our proposed method Discrete-PCA, and
expand on the techniques to combine multiple embeddings and
categorical signals into one-feature via our proposed VQ-fusion
method. Next, we demonstrate our embedding table-free technique
called SIDE to convert codewords to embeddings in ads-ranking
models. The base concept of residual quantization (RQ) [1] involves

Ramasamy et al.

the use of D independent codebooks that are stacked on top of
each other to compress the residue from the previous layer. The
approximation to the original embedding is therefore the sum of
the D selected codewords.

3.1 Structured-Quantization method

We propose a new quantization technique by noting that k-means
uses a single point for each codeword. This means that the code-
word collection has no inherent structure. As a result we need a
large number of parameters to represent the codewords (k times
d) and we cannot increase the information content measured by
log k significantly (except via product and residual quantization
extensions of course). To circumvent this issue we make the code-
words structured - to be precise we make groups of L codewords
co-linear. Thus, the codebook has the following structure:

C={sl-uk+bk:Vk,l} (1)

where uy is the codeword group’s direction vector (unit vector), bx
is the reference point for codeword group k and s; is the signed dis-
tance of the selected codeword [ from the reference point by along
the direction uy; giving us our Structured-Quantization method.

Next, we present the inference logic that is leveraged by the
training stage.

3.1.1 Inference procedure. This three-step method identifies the
codeword indices k and [ given a codebook C and a point x.

First, we first choose the “line” k which is closest to the given
point x by measuring the distance of the point from the line corre-
sponding the k-th codeword group and picking the closest line (by
choosing uy):

k = argminy, (||x — bgl|? = [(x = b, up)|?) . )

Once we identify the closest line, we estimate the optimal signed
distance §; through the following inner product:

§]; = <X - b]%, u,;) . (3)
The estimated projection weight $; is then quantized using an scalar
quantizer Q (-) with L bins to identify the codeword index lA,; for

the signed distance. This scalar quantizer used is FSQ and is shared
across the collection {ug}.

3.1.2  Training procedure. For training this VQ-VAE model, in addi-
tion to the reconstruction loss, we add the commitment and code-
book losses and use a straight-through estimator to propagate the
gradients to the encoder network.

3.2 Towards Discrete-PCA

In this work, we assume that a vector codebook is redundant in the
context of residual and/or product quantization based structured
quantization; thereby setting the the number of vector codewords
to 1. We design residual structured quantization as a form of gen-
eralized PCA due to its stacked nature which promotes the Ma-
tryoshka property[7] of such codebooks. Since the residual depth
is difficult to increase due to its serial nature, we propose to use a
combination of product and residual quantization to increase the
quantizer bit-width. Additionally, we design the scalar codebook (s;
in (1)) by assuming that just three values {—1,0, 1} suffice for the



SIDE: Semantic ID Embedding for effective learning from sequences

Embedding Lookup
7N ~
> O(N x d) memory

Encoder output siDs

- linear project [

0(1) memory
no extra memory required

Figure 2: Process of O(Nxd) memory removal using the
embedding-free lookup in proposed SIDE. N = hash size of
embedding tables and d=embedding dimension. The deter-
ministic unpacking in SIDE ensures O(1) memory require-
ment.

signed distance. This follows recent research on Large Language
Model weights, which suggest that such a ternary codebook can
be universal for LLM weights [10]; thereby resulting in quantizer
Discrete-PCA. The implementation of the scalar quantizer follows
Finite Scalar Quantizer (FSQ) [11] with number of latent dimen-
sions equal to 1 (or the number of product quantization groups
when used in conjunction with PQ).

DPCA can be viewed as a form of generalized PCA where the
projection weights can only take three values {-1,0, 1} and thus
the component vectors no longer turn out to be orthogonal. The
codebook collection of this method is given by the following ex-
pression:

C= Z (squg +bg), 4
]

where d refers to the residual depth and sy can take one of three
values in {-1,0, 1}. When used alongside product-quantization, we
have p-parallel orthogonal codebooks, each with structure resem-
bling (4).

3.3 SIDE: Converting SIDs to embeddings

When codewords are exported, they are typically n-gram-ed to
form a SID or a collection of SIDs. For instance, each codeword is
of the form ¢ € {-1,0, 1} and we convert these to Semantic ID
(SID) using the following n-gram operation:

s=23k(l+ck) (5)
k=1

In the ranking model, this n-gram operation can be undone using
floor divide and modulo operations that yields the codeword vectors
¢ with entries in {—1, 0, 1}. These latent codewords are called SID
Embeddings or SIDE and are used directly as embeddings. It is
noteworthy that without SIDE, the memory requirement of any
quantizer scales as O(exp(Cb) X d), where b is the number of bits
and d is the dimension of the embedding for some constant C; due
to embedding tables used for decoding embeddings. The proposed
SIDE approach reduces this to O(b X d) as shown in Figure 2.

4 VQ Fusion

In this section we describe the ads-ranking systems that utilize a
multitude of content signals. These signals can be broadly catego-
rized into two types: embeddings and categorical predictions. While
incorporating all content signals into an ads-ranking model can be

AdKDD 25, Toronto, Canada, August 04, 2025
CTR task
block
SIDE j\

Interaction block
>-| decoder |
,,,,,, J
}
,,,,,, _d
- (MLPs)
,,,,,, J

f i 1

User history block

Dense block (MLP)

Figure 3: Ranking system overview. The dotted lines repre-
sent query vectors for PMA that are typically drawn from
Sparse and Embedding blocks.

challenging, adding each signal one by one using SIDs obtained
from VQ-methods can lead to increased storage costs and decrease
the overall system efficiency. To address this challenge, we propose
a novel approach of fusion, called VQ-fusion that jointly encodes all
available content signals (embeddings, categorical predictions, etc)
into a single SID. Our approach leverages the multi-input multi-
output auto-encoder setup, where, the latent vector is learned using
the following mixing model:

h=f(€1 (Xl)’“wen(xn))’ (6)

from the n input signals as {xx }. e, (-) are the corresponding en-
coders for each input signal and f (-) is the fusion network. Next,
vector quantization is performed h either using a version of FSQ [11]
(with codewords for each dimension corresponding to {—1,0, 1}) or
our proposed DPCA method in Section 3 to arrive at the codeword
h. Next, h (via s demonstrated below) is used to reconstruct the
inputs {x} using the decoder network. This network is trained
end-to-end to minimize the reconstruction loss. To propagate gra-
dients through the non-differentiable VQ operation, his replaced
with its straight-through version s = h — stop_gradient (h - fl)
Next, we decode the inputs from the straight-through version
s of the latent codeword using the decoder architecture which is
symmetric to the encoder as Xx = g (r (s)), where r (-) is the
shared model and gy, (-) are individual task decoders. By training
this joint auto-encoder to minimize weighted reconstruction loss
Dk Witk (Xk, Xx) across all content signals, a compact and informa-
tive representation can be learned that leverages the underlying
relationships between the different signals. This approach leads
to reduction in the cost of the semantic ID representation and im-
provement in the quality of representations across signals.

5 Ads-Ranking system

In this section we focus on the relevant components of the ads-
ranking stack [3] and highlight the changes needed to utilize the
SIDE property of FSQ and DPCA based SIDs. Large scale deep-
learning ranking systems can be broken down into (i) sparse (ii)
dense (iii) embedding and (iv) sequence or user history blocks as
shown in Figure 3.



AdKDD ’25, Toronto, Canada, August 04, 2025

Sparse block: Each sparse / categorical / ID feature is mapped to
a d-dimensional embedding sy using a learnable embedding table
Sk = SkX, where, x;. is the r-hot representation of the k-th sparse
feature and S, is the associated embedding table for the feature.
Dense block: All dense features are collated and represented by a
single vector v. This vector is mapped to multiple d-dimensional
representations {d, ..., d,} using learnable functions Dy (v) for k
in{1,...,r}
Embedding block: Embedding features are handled similar to
dense features with each embedding being operated on by a sepa-
rate function (typically a two-layer multi-layer perceptron) with
r = 1 outputs to yield the d-dimensional representation for k-th
embedding given by ey.
User history block: On the user-history side, the traditional ap-
proach is to convert timestamped sequence of sparse signals into
embeddings using an embedding table and then leverage sequence
algorithms like the Transformer-Encoder or Pooled-Multihead At-
tention (PMA)[9]. The user history block is a one-layer PMA module
QK™

is U = softmax (W) V, where, U is a k X d matrix representing

the k user history embeddings. Q is a k X d matrix derived from a
subset of other sparse and embedding features {si} and {e;}. The
key-matrix in PMA, K = VO, where V = [ey,...,e;] isthe I x d
user history embedding matrix. Here I denotes the length of the
user sequence and © is a d X d model weight matrix that maps each
user history embedding to its corresponding key. We implement
SIDs or their n-grams as sparse sequence features (based on prior
work in [1]) to derive the user history embeddings ej.

In the following sections we demonstrate the application of the
SIDE property in the user history block and compare the user-ad
engagement results to that using SIDs (or their n-grams) directly
as sparse sequence features. We convert the SIDs to embeddings
hy € R’ for some t typically smaller than d (as discussed in Sec-
tion 3.3). Next, we use a d-dimensional projection hiQ of these
SIDE embeddings as features in the user history model, where Q is
a learnable weight matrix of shape d X t.

5.1 Online Training

In this sub-section we present the online training components of
the our VQ-fusion model (and correspondingly DPCA model) as a
part of the ads-ranking system in production.

5.1.1 Data Collection and Model Training. The data collection pro-
cess involves logging data from currently deployed upstream con-
tent models, which is then routed via logging to train our VQ-fusion
encoders. The logged upstream data also serves as the ground-truth
for training our auto-encoder. To ensure compliance with data
privacy regulations, data is cleaned and filtered through rigorous
privacy filters, such as ID masking, prior to any training. The VQ-
fusion model converges quickly and needs 1 billion data points for
initial offline training. Once the fusion model is trained, its inference
is used to generate output features (SID) to train the downstream
ranking model with 29 billion data points for the initial offline
training.

5.1.2  Recurring Training and Inference. Upstream content mod-
els that produce embeddings leverage recurring training through

Ramasamy et al.

periodic scheduled training jobs. We generate pipelines for our VQ-
fusion model and apply them into the existing upstream training
jobs. This results in our VQ-fusion models getting trained periodi-
cally whenever upstream models are trained. This also addresses
any new item embeddings which are learnt in VQ-fusion during
this recurring training. The inference output (namely SID) produces
IDs that are then logged into downstream training tables and serve
as output features for our ads-ranking system.

6 Experiments and Results

In this section, we present the results for reconstruction accuracy of
the SID encoding methods RQ-VAE, FSQ and our proposed DPCA in
multiple settings: (i) one-embedding at a time (1:1) for two content
embeddings and (ii) in the context of VQ-fusion with the same two
embeddings. Also, the impact of the proposed SIDE technique in
capturing dot-product ordering of the two embedding collections
in the 1:1 setting is presented. Finally we analyze the overall ads-
ranking performances in Section 6.2.

6.1 Encoder Design

6.1.1 1:1 encoder. We implement two content embeddings from
the text-only content model (for converting text — embeddings)
and the image-only content model (for converting image — em-
beddings). For both these embeddings we use 1 billion datapoints
to train the 1:1 quantizers (text embedding quantizer and image
embedding quantizer using each of RQ, FSQ and DPCA). For fusion
setting we jointly train a single quantizer on the combined dataset
of text and image embedding using FSQ, DPCA and RQ methods.
The cosine reconstruction loss of each method is shown in Table 1.

Setting Method Image A %age Text A %age

1:1 RQ 0.1995 - 0.3066 -
DPCA 0.1870 - 0.2319 -
FSQ 0.1549 - 0.2435 -

Fusion RQ 0.2224  11.47%  0.2892 5.67%
DPCA 0.1945 4.01% 0.2365 1.98%
FSQ 0.21607  39.48%  0.2803  15.11%

Table 1: Cosine reconstruction loss comparison of three 24-
bit VQ methods for two 1024-dimensional content embed-
dings. 1:1 refers to separate training of both the image and
text quantizers while the fusion setting refers to using a sin-
gle quantizer for both embeddings; thereby utilizing half
the number of total bits. A %age refers to the percentage in-
crease in cosine reconstruction loss for fusion model for each
method compared to 1:1 encoder model.

6.1.2  Parameter tuning: We tune the 3 major hyper-parameters
as the numbers of: scalar quantization buckets, residual quanti-
zation layers, and product quantization buckets, to minimize the
reconstruction loss of the embeddings. This is performed by stan-
dard parameter sweep. Once the reconstruction loss is minimized,
the selected parameters are used to test loss values of the derived
SIDs in ads-ranking model as sparse features to ensure loss par-
ity or improvements in ads-ranking model performances over raw
embeddings.



SIDE: Semantic ID Embedding for effective learning from sequences

6.1.3 VQ-Fusion. We train a single quantizer on the combined
dataset of image and text embeddings jointly, thereby increasing
the compression by a factor of two. In Table 1, A%age demonstrates
the enhancement of the fusion process over 1:1 quantization method
such that for image reconstruction tasks, 1:1 quantizer loss is 0.1995
and fusion quantizer loss is 0.2224 leading to A%age = 11.47%. We
observe that in a fusion setting (joint training of both image and
text quantizer), our proposed DPCA method has the least change
in reconstruction loss when compared to FSQ and RQ methods as
shown by the least A%age in Table 1.

6.1.4 Efficacy of latent codeword representation. As discussed in
Section 3.3, for FSQ and DPCA, the n-gram operation is reversed
and centered (by subtracting 1 in this case) to convert the Semantic
IDs into embeddings. Next, the following steps are performed for
the 1:1 encoder: The kNN results (using cosine similarity) are com-
puted for the 1:1 24-bit compression of the two 1024-dimensional
content embeddings presented in Table 2. These kNN results are
then compared to those obtained from the original raw embeddings’
closest 20 kNN results (based on cosine similarity as well). We use
Recall@k for different values of k to quantify the correctness of
this comparison by using 1000 random seed queries picked from a
200K large embedding corpus.

Corpus Method R@20 R@50 R@100

Image DPCA 0.1467 0.3326  0.5088
FSQ 0.2370 0.4187 0.5998

Text DPCA 0.1703 0.3418 0.5213
FSQ 0.1323  0.2943 0.4848

Table 2: Comparison of DPCA and FSQ methods using Recall
at 20, 50 and 100 for closest-20 neighbors as defined by the
original embedding to show the efficacy of Semantic ID to
latent embedding conversion (SIDE property).

Based on Table 2, we observe that both FSQ and proposed DPCA
retain the dot-product ordering information present in the original
embedding even with a massive 1024 X 16 + 24 ~ 682 compres-
sion ratio. We verify these results qualitatively by inspecting k-NN
results like those in Figure 4.

Figure 4: k-NN results with leftmost ad as the query using
cosine similarity as the measure. Top: Thumbnails corre-
sponding to original image embedding. Bottom: Thumbnails
corresponding to 680x compressed FSQ SIDE representation.
All of these ads are related to sneakers.

AdKDD 25, Toronto, Canada, August 04, 2025

6.2 Ads-Ranking

In our ads-ranking systems, we predict two main tasks: click (CTR)
and the conversion (CVR: eventual purchase) probabilities. In this
paper we access the improvement for CTR prediction in terms of
Normalized Entropy, which is defined as follows:
_ YN (yilogpi + (1 —yi) log(1 — py))
plogp +(1-p)log(1-p)
where, y; are the labels, p; are model predictions, p = Z¥i/N is
the prior probability and N is the number of samples. We utilize

(NEqgiectNEconv) to compute the overall Rol of the feature, where C

is the lzocgging cost of onboarding the feature.

In this experiment, we analyze the impact of adding K-means
top-k clusters (k nearest neighbors) and SIDs as sparse-inputs (cor-
responding to the ad-item to be ranked) in Table 3 for a new content
feature. Note that we use the same hash size for both K-means and
SIDs. We now demonstrate the NE gains and Rol for a DPCA en-

coded feature used as an ad-feature in our ranking architecture.

NE

@)

Method k-means SID
Incremental Cost X1 x0.23
Click NE gain 0.0108%  0.0085%
Conversion NE gain  0.0037% 0.0101%
Rol X1 X5.57

Table 3: Incremental data and feature cost and normalized
entropy gain relative to the baseline for a DPCA encoded
ad feature. Baseline is a large-scale production ads-ranking
model without the specific ad-features.

In Table 3, the cost C of features is directly proportional to the
feature length used. k-means features with length 50 have cost
46.54kW, while the SID features have length 3 and corresponding
cost is 10.84kW. This leads to a reduction in incremental feature
cost by 76.7%. Hence from Table 3 we see that SID improves Rol by
5.57 times over traditional k-means method. This leads to an NE
gain for using DPCA as 1.28X or 28%

Next, we present results for adding SID sparse inputs and SIDs
recovered as latent embeddings (SIDE) for the user-history block in
two settings: (i) 1:1 encoder (in Table 4) and VQ-fusion (in Table 5)
for two different types of user history sequences. In Table 4, we

Method SID SIDE
Incremental cost X1 %x0.33
Click NE gain 0.0082% 0.0185%

Conversion NE gain 0.0086% 0.0111%

Rol X1 X5.33

Table 4: Normalized entropy gain relative to the baseline for
a DPCA encoded feature used as user history. Baseline is the
large-scale production ads-ranking model.

demonstrate the NE gains for using SID and unpacking it with SIDE
for a DPCA encoded feature. The feature cost for SIDE is 1/3rd of
SID since we just use a single n-gram from SID to unpack in SIDE.



AdKDD ’25, Toronto, Canada, August 04, 2025

We observe that SIDE further improves NE gains over SID and
enhances the Rol by 5.33% for the DPCA encoded feature on the
user-side. Note that the hash size in SID is set to number of scalar
quantization raised to power n-gram length, which is 64° = max
cardinality of the SID feature, as shown in Section 6.2.1.

In Table 5, the gains from SIDE are further enhanced when by
using a VQ-fusion SID feature comprising of 6 individual signals
encoded into a single feature as. Here, the Rol improves by 7.40x
over SID. This leads to an NE gain when using SIDE to be 2.44x or
144%.

Method SID SIDE
Incremental cost X1 x0.33
Click NE gain 0.0100% 0.0284%

Conversion NE gain  0.0067% 0.0124%

Rol X1 X7.40

Table 5: Normalized entropy gain for VQ fusion encoded
feature comprising 6 individual signals, used as user history.
Baseline = 6 different 1:1 encoded DPCA features used as SID.

6.2.1 Encoder hyper-parameterization. From our ads-ranking ex-
periments we demonstrate examples of varying the SID construc-
tion hyper-parameters and its impact in NE gains from the ads-
ranking model. In the VQ-Fusion experiment, summarizing 6 user-
side features in Table 5 and retaining the number of scalar quanti-
zation buckets as 64 and the number of residual quantization layers
as 9 and increasing the n-gram size in SID, leads to the NE trend
in Table 6. Here, we observe that for SID, as more n-gram IDs are

Prefix n-gram length ~ SID SIDE
3 0.029% 0.044%

4 0.020% 0.046%

Table 6: Effect of prefix n-gram length on NE, keeping all
other Encoder hyper-parameters fixed.

introduced (by making the prefix n-gram longer from 3 to 4) in
the ads-ranking model, the NE gains reduce due to higher noise
due to increase in hash collisions based on the embedding table
size limitations. The maximum hash size for n-gram length 3 is
64% = 262, 144 and for length 4 is 64* = 16,777, 216. However, our
proposed SIDE technique avoids hash collisions while unpacking
the 4th n-gram ID leading to NE increase.

We also assess the effect of increasing the number of scalar
quantizer codewords on the ads-ranking NE gains. Using 4 scalar
quantizer codewords NE gain for SID and SIDE are 0.018% and
0.035% respectively. Extending this analysis to 64 codewords results
in NE gains for SID and SIDE as 0.015% and 0.044%, respectively.

6.3 Discussion on Production Impact

In this section we assess the end-user benefits in terms of ads-score
(values for both advertisers and users). Ads-score is the sum of
the two entities: 1) ads-value or the value to advertisers calculated
by adding paced-bids, 2) quality value which measures value to
users, considering, positive interactions (e.g., clicks, likes), negative
interactions (e.g., hiding an ad), ad-quality and user engagement.
We observe overall gains of 0.17% ad-score with the launch bundle

Ramasamy et al.

involving our proposed method (DPCA, VQ-fusion and SIDE put
together) on the end-users.

In terms of other production metrics: our VQ-Fusion models
deployed in online inference have very low latency (< 500 ms) and
memory consumption (<= 2.5 GB), recurring training has 0.33%
QPS regression. The inference model requires 2, 16GB T1 machines,
leading to 20 lesser deployment machine costs when compared to
traditional quantization models like k-means leading to improved
Rol for our proposed system. The latency and throughput effect on
feature logging due to the additional VQ-Fusion model is negligible,
since real-time feature availability for ads-ranking systems remains
less than 60 minute SLA-bounds.

7 Conclusion and Future Work

In this paper, we have presented a novel approach to incorporating
high-dimensional content embeddings into sequence-based recom-
mendation models using vector quantization. Our method called
VQ-fusion, which leverages a multi-task VQ-VAE fusion frame-
work and an embedding table-free SID to embedding conversion
technique (SIDE), has been shown to reduce storage costs while
improving ranking outcomes on large-scale ads recommendation
systems. The SIDE method can lead to significant improvements
in the efficiency for the sequence learning paradigm in modern
ad-recommendation systems.

References

[1] Anima Singh et. al. 2024. Better Generalization with Semantic IDs: A Case Study
in Ranking for Recommendations. arXiv:2306.08121

[2] Lijun Yu et. al. 2024. Language Model Beats Diffusion — Tokenizer is Key to
Visual Generation. arXiv:2310.05737

[3] Maxim Naumov et. al. 2019. Deep Learning Recommendation Model for Per-

sonalization and Recommendation Systems. arXiv:1906.00091 [cs.IR] https:

//arxiv.org/abs/1906.00091

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.

Iterative Quantization: A Procrustean Approach to Learning Binary Codes for

Large-Scale Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 12 (dec

2013), 2916-2929. doi:10.1109/TPAMIL.2012.193

[5] Ruijie Hou, Zhaoyang Yang, Yu Ming, Hongyu Lu, Zhuobin Zheng, Yu Chen, Qin-
song Zeng, and Ming Chen. 2024. Cross-Domain LifeLong Sequential Modeling
for Online Click-Through Rate Prediction. Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining 1, 1 (2024), 5116-5125.

[6] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117-128. doi:10.1109/TPAMI.2010.57

[7] Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya
Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade,
Prateek Jain, and Ali Farhadi. 2024. Matryoshka Representation Learning.
arXiv:2205.13147 [cs.LG] https://arxiv.org/abs/2205.13147

[8] Doyup Lee, Chiheon Kim, Saechoon Kim, Minsu Cho, and Wook-Shin Han. 2022.
Autoregressive Image Generation using Residual Quantization. arXiv:2203.01941

[9] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and

Yee Whye Teh. 2018. Set Transformer. CoRR abs/1810.00825 (2018).  http:

//arxiv.org/abs/1810.00825

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan

Huang, Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei. 2024. The Era of 1-bit

LLMs: All Large Language Models are in 1.58 Bits. arXiv:2402.17764

[11] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. 2023.

Finite Scalar Quantization: VQ-VAE Made Simple. arXiv:2309.15505

[12] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaogiang

Zhu, and Kun Gai. 2020. Search-based user interest modeling with lifelong

sequential behavior data for click-through rate prediction. Proceedings of the

29th ACM International Conference on Information & Knowledge Management 1, 1

(2020), 2685-2692.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan, Trung

Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula,

Ed H. Chi, and Maheswaran Sathiamoorthy. 2023. Recommender Systems with

Generative Retrieval. arXiv:2305.05065

[4

[10

=
&


https://arxiv.org/abs/2306.08121
https://arxiv.org/abs/2310.05737
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://doi.org/10.1109/TPAMI.2012.193
https://doi.org/10.1109/TPAMI.2010.57
https://arxiv.org/abs/2205.13147
https://arxiv.org/abs/2205.13147
https://arxiv.org/abs/2203.01941
http://arxiv.org/abs/1810.00825
http://arxiv.org/abs/1810.00825
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2309.15505
https://arxiv.org/abs/2305.05065

	Abstract
	1 Introduction
	2 Related Work
	3 Vector Quantization Method
	3.1 Structured-Quantization method
	3.2 Towards Discrete-PCA
	3.3 SIDE: Converting SIDs to embeddings

	4 VQ Fusion
	5 Ads-Ranking system
	5.1 Online Training

	6 Experiments and Results
	6.1 Encoder Design
	6.2 Ads-Ranking
	6.3 Discussion on Production Impact

	7 Conclusion and Future Work
	References

