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ABSTRACT
In modern recommender systems, CTR/CVR models are increas-
ingly trained with ranking objectives to improve item ranking qual-
ity. While this shift aligns training more closely with serving goals,
most existing methods rely on in-batch negative sampling, which
predominantly surfaces easy negatives. This limits the model’s abil-
ity to capture fine-grained user preferences and weakens overall
ranking performance. To address this, we propose a Hierarchical
Group-wise Ranking Framework with two key components. First,
we apply residual vector quantization to user embeddings to gen-
erate hierarchical user codes that partition users into hierarchical,
trie-structured clusters. Second, we apply listwise ranking losses to
user-item pairs at each level of the hierarchy, where shallow levels
group loosely similar users and deeper levels group highly similar
users, reinforcing learning-to-rank signals through progressively
harder negatives. Since users with similar preferences and con-
tent exposure tend to yield more informative negatives, applying
ranking losses within these hierarchical user groups serves as an
effective approximation of hard negative mining. Our approach im-
proves ranking performance without requiring complex real-time
context collection or retrieval infrastructure. Extensive experiments
demonstrate that the proposed framework consistently enhances
both model calibration and ranking accuracy, offering a scalable
and practical solution for industrial recommender systems.
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1 INTRODUCTION
Click-through rate (CTR) and conversion rate (CVR) prediction
models play a pivotal role in large-scale recommender systems and
online advertising. While most modern systems rely on binary clas-
sification objectives such as log loss to estimate the likelihood of
user actions, enhancing the ranking quality of model predictions
has become a critical direction for improving user experience and
achieving business goals. In this context, learning-to-rank (LTR) ob-
jectives, including pairwise and listwise losses, are widely adopted
to better capture users’ relative preferences among items.

However, a persistent challenge lies in constructing meaningful
item comparisons during training. In particular, existing ranking
losses often rely on in-batch negative sampling or uniformly sam-
pled negative pairs, which tend to overemphasize easy negatives
while underutilizing more informative, harder negatives. Recent
research has shown that sampling negatives based on similarity or
gradient-based importance can significantly improve model perfor-
mance, but often at the cost of increased computational overhead,
particularly in real-time environments. Existing context-aware ap-
proaches such as JRC [6] and SBCR [10] improve ranking perfor-
mance by leveraging online ranked list logging. However, these
methods require real-time infrastructure and tightly integrated sys-
tems, which increases deployment complexity and limits scalability
in production environments. Furthermore, CVR models often suffer
from sparse in-session user feedback, limiting the effectiveness of
context-aware negative sampling based on in-session interactions.

To address these challenges, we propose a novel Hierarchical
Group-wise Ranking Framework that improves ranking perfor-
mance without relying on real-time context or nearest-neighbor
retrieval. Our approach uses residual vector quantization (RVQ)
to learn hierarchical user codes and group user-item pairs into
multi-level clusters. Within each group, we apply listwise ranking
losses over progressively harder negatives, based on the intuition
that users with similar profiles or behaviors yield more informative
comparisons. This hierarchical, multi-resolution cross-user sam-
pling provides an efficient and scalable alternative for industrial
recommendation systems. The main contributions of this paper can
be summarized as follows:

• We propose a residual vector quantization module to en-
code user embeddings into hierarchical discrete codes, which
serve as the foundation for multi-level user grouping. This
structure enables dynamic and granular control over the
difficulty level of sampled negatives during training.
• We introduce a hierarchical group-wise listwise ranking loss
that applies ranking loss within user groups defined at each
hierarchical level. By varying the granularity level of group-
ing, our method progressively surfaces harder negatives,
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offering an efficient alternative to gradient-based sampling
strategies.
• We integrate this hierarchical ranking objective with stan-
dard calibration losses in a multi-task learning framework
and demonstrate that our method improves both conver-
gence efficiency and ranking performance across multiple
domains, without requiring real-time context collection or
retrieval infrastructure. Our framework serves as a plug-in
component that introduces negligible additional training
overhead and zero serving latency.

2 PRELIMINARIES
The recommendation model with binary relevance is commonly
formulated as a binary classification problem optimized with binary
logistic loss. The binary logistic loss function is defined as:

Llogloss = −
1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )] (1)

where 𝑦𝑖 represents the predicted probability and 𝑦𝑖 ∈ {0, 1} is
the binary feedback label. To enhance ranking performance, recent
approaches incorporate Learning-to-Rank (LTR) losses as auxiliary
objectives. The combined objective function L = Llogloss +𝜆L𝑟𝑎𝑛𝑘
integrates binary logistic loss with either pairwise ranking loss
(comparing item pairs) or listwise ranking loss (optimizing the en-
tire item list ordering), where 𝜆 controls the contribution of the
ranking component. In this setting, the ranking loss typically oper-
ates on the model’s predicted scores over user-item pairs. Negative
samples for the ranking loss are commonly drawn uniformly from
other user-item pairs within the same training batch (i.e., in-batch
negative sampling) to construct contrastive comparisons during
training.

Without loss of generality, the notation used throughout this pa-
per for recommendation models with binary relevance is as follows:
the training dataset consists of instances (𝑥𝑢 , 𝑥𝑖 , 𝑦), where 𝑥𝑢 and 𝑥𝑖
denote user and item features respectively, 𝑦 ∈ {0, 1} indicates the
binary user-item feedback label. The raw user features 𝑥𝑢 and item
features 𝑥𝑖 are processed by their respective networks to obtain user
embedding e𝑢 and item embedding e𝑖 . These embeddings are then
fed into a main network that outputs logit 𝑠 , which is transformed
into the predicted probability 𝑦 = 𝜎 (𝑠) using the sigmoid function
𝜎 . The primary optimization objective is the binary logistic loss
comparing 𝑦 against ground truth labels 𝑦, while a ranking loss
encourages correct ordering of items. This general notation serves
as the foundation for our proposed model as well, which extends
these concepts with additional specialized notation to capture our
proposed framework.

3 NEGATIVE SAMPLING CHALLENGES AND
THEORETICAL GRADIENT ANALYSIS

While widely adopted, CTR/CVR models that combine binary logis-
tic and ranking losses still face key optimization challenges—namely,
inefficient negative sampling and slow convergence. Existing meth-
ods often focus on easy negatives that offer limited learning value.
Through gradient-based analysis, we show that sampling harder

negatives in proportion to their gradient norms significantly im-
proves convergence. This insight motivates our hierarchical group-
wise sampling strategy, which efficiently surfaces challenging neg-
atives from similar users during training.

3.1 Limitations of Uniform Sampling
Traditional negative sampling strategies, such as uniform in-batch
sampling, often prioritize easy negatives that are trivial for the
model to distinguish. This limits the model’s ability to learn fine-
grained user preference signals and ultimately undermines ranking
performance. To address this, recent work has explored retrieving
harder negatives via approximate nearest neighbor (ANN) search
[8], which improves the model’s capacity to capture subtle distinc-
tions. However, ANN-based methods introduce significant compu-
tational overhead and are generally better suited to retrieval models
than to ranking models, which require capturing complex user-item
interactions beyond inner products and supporting online learn-
ing. The key challenge is to efficiently surface informative hard
negatives during training, without relying on real-time context
collection or exhaustive nearest-neighbor search.

3.2 Gradient-Based Sampling Theory
Consider a training batch with positive and negative samples. An
importance-weighted stochastic gradient descent (SGD) update for
the ranking loss can be expressed as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
1

𝑁𝑝−
∇𝜃𝑡 𝑙 (𝑠

+, 𝑠−) (2)

where 𝜂 is the learning rate. 𝜃𝑡 represents the parameters at iter-
ation 𝑡 , 𝜃𝑡+1 the updated parameters. 𝑝− denotes the probability
of selecting a particular negative instance (𝑥𝑢 , 𝑥𝑖 , 𝑦−). The scal-
ing factor 1

𝑁𝑝− ensures an unbiased gradient estimate. Following
derivations in variance reduction [3, 4], let 𝑔 = 1

𝑁𝑝− ∇𝜃𝑡 𝑙 (𝑠
+, 𝑠−) be

the weighted gradient, we can write the convergence rate as:

𝐸Δ𝑡 = ∥𝜃𝑡 − 𝜃∗∥2 − 𝐸𝑃− (∥𝜃𝑡+1 − 𝜃∗∥2)

= 2𝜂𝐸𝑃− (𝑔)𝑇 (𝜃𝑡 − 𝜃∗) − 𝜂2𝐸𝑃− (𝑔)𝑇 𝐸𝑃− (𝑔)
− 𝜂2Tr(𝑉𝑃− (𝑔))

(3)

where 𝑃− is the negative sampling distribution for a given positive
example (𝑥𝑢 , 𝑥𝑖 , 𝑦+). This formulation shows that convergence can
be improved by selecting negative examples from a distribution that
reduces Tr(𝑉𝑃− (𝑔)), which quantifies the total gradient variance
introduced by the negative sampling. The optimal sampling strategy
is

𝑝∗− = argmin
𝑝−

Tr(𝑉𝑃− (𝑔)) ∝ ∥∇𝜃𝑡 𝑙 (𝑠
+, 𝑠−)∥2 (4)

The above analysis shows that the optimal negative sampling dis-
tribution is proportional to the squared gradient norm of each
instance, favoring samples that contribute larger updates to the
model. This approach is particularly valuable in recommendation
systems, where the vast majority of negative examples contribute
minimal learning signals. Prioritizing hard negatives with large
gradient contributions reduces the variance of gradient estimates
and accelerates convergence, aligning with established variance
reduction principles in stochastic optimization and motivating our
gradient-informed sampling strategy.
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4 PROPOSED FRAMEWORK
To operationalize the above theoretical insight, we propose a hierar-
chical group-wise negative sampling strategy that approximates the
optimal distribution without incurring costly computations. Our
approach clusters users based on profile or behavioral similarity,
and groups the associated user-item samples according to these user
clusters across multiple hierarchical levels. This structure enables
the model to sample negatives from users of varying similarity:
from coarse groups capturing general behavior patterns to fine-
grained subgroups reflecting closely shared interests. Intuitively,
negatives samples drawn from similar users are more informative,
as similar users tend to be exposed to overlapping content and
exhibit comparable preferences. By leveraging negative samples
from similar users, our method introduces progressively harder
negatives that enhance the learning signal throughout the hier-
archy. This promotes more effective optimization of ranking loss
while maintaining computational efficiency, ultimately improving
learning dynamics in CTR/CVR prediction tasks.

We designed the proposed framework, as illustrated in Figure 1
with three main components:

Hierarchical User Code Generation: We quantize each user
embedding into a structured sequence of discrete codes using multi-
stage residual vector quantization, where each stage uses a code-
book to quantize the remaining error from the previous level. This
produces a hierarchical code sequence that forms a trie-like struc-
ture, where higher levels represent broad semantic groupings and
deeper levels capture fine-grained user distinctions.

Hierarchical Group-wise Ranking Objective: Based on the
generated user codes, we organize users into nested groups where
users sharing the same prefix codes at each level are grouped to-
gether, forming a trie-like structure of increasing similarity. We ap-
ply listwise ranking loss within each group, computing the loss over
groups containing user-item pairs with shared code prefixes. By
varying the group depth, we control negative difficulty: shallow lev-
els provide easier negatives from loosely similar users, while deeper
levels yield harder negatives from highly similar users. To balance
contributions across hierarchy levels, we employ an uncertainty-
based weighting scheme, enabling the model to adaptively focus
on the most informative hierarchy depths during training.

Multi-Objective Training Strategy: Our training objective
combines three components: a primary calibration loss on predic-
tions from the original user embedding, an auxiliary calibration
loss on predictions from the quantized embedding (using straight-
through estimator to enable gradient flow), and the proposed hi-
erarchical ranking loss. Unlike traditional vector quantization ap-
proaches, we omit commitment loss to preserve adaptability in
dynamic recommendation settings, instead relying on the auxiliary
calibration loss to encourage alignment between original and quan-
tized embeddings while maintaining flexibility for evolving user
preferences and behaviors.

In our model specifically, the user embedding e𝑢 undergoes resid-
ual vector quantization to produce the quantized user embedding
e𝑞𝑢 and user hierarchical codes c𝑢 . When the shared main network
uses the quantized user embedding e𝑞𝑢 and the item embedding
e𝑖 as inputs, it produces logit 𝑠𝑞 and the corresponding predicted
probability 𝑦𝑞 = 𝜎 (𝑠𝑞). To avoid conflicting gradients between the
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Figure 1: The Architecture of the Proposed Framework

dual prediction paths, we stop the gradient flow from the auxiliary
loss into the item embedding by applying stop_gradient(e𝑖 ) when
computing 𝑦𝑞 . This ensures that only the user network receives
updates from the auxiliary calibration loss, preserving training
stability. Both the original and quantized predictions (𝑦 and 𝑦𝑞)
are optimized using calibration loss against ground truth labels.
Additionally, the user hierarchical codes c𝑢 are used to compute a
hierarchical group-wise ranking loss to further enhance ranking
performance. These notations (e𝑞𝑢 , c𝑢 , 𝑠𝑞 , 𝑦𝑞) extend the general
framework presented earlier and are specific to our quantization-
based approach, introducing additional variables necessary to de-
scribe our model’s unique architecture and optimization strategy.

4.1 Hierarchical User Codes Generation
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Figure 2: Residual Vector Quantization

To capture structured user similarity and enable efficient group-
wise sampling, we discretize user embeddings using a residual
vector quantization (RVQ) framework. This process encodes each
user into a sequence of discrete codes, referred to as hierarchical
user codes, which form the foundation of our multi-resolution user
grouping strategy. Figure 2 illustrates the cascaded quantization
process and the resulting hierarchical user code structure.
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Given a user embedding e𝑢 ∈ R𝑑 produced by the user net-
work (which may include contextual or sequential features), we
apply an 𝐿-stage residual quantization procedure to obtain a code
sequence c𝑢 = [c𝑢,1, . . . , c𝑢,𝐿]. At each stage 𝑙 , a codebook C (𝑙 ) =
{C (𝑙 )1 , . . . , C (𝑙 )

𝐾
} is used to quantize the residual vector passed down

from the previous level. These codebooks are arranged in a cascaded
structure, where each level incrementally refines the remaining
quantization error:

r(1)𝑢 = e𝑢

c𝑢,𝑙 = argmin
𝑘
∥r(𝑙 )𝑢 − C

(𝑙 )
𝑘
∥22

r(𝑙+1)𝑢 = r(𝑙 )𝑢 − C
(𝑙 )
c𝑢,𝑙

(5)

The quantized embedding is reconstructed by summing codebook
vectors from all stages:

ê𝑢 =

𝐿∑︁
𝑙=1
C (𝑙 )c𝑢,𝑙 (6)

To ensure stable learning and effective usage of codebook en-
tries, each codebook is updated using Exponential Moving Average
(EMA) strategy. Following each assignment, usage statistics and
accumulated residuals are used to softly update the code vectors:

C (𝑙 )
𝑘
←𝑚 · C (𝑙 )

𝑘
+ (1 −𝑚) · 𝜇𝑘 , 𝑁𝑘 ←𝑚 · 𝑁𝑘 + (1 −𝑚) · 𝑛𝑘 (7)

where 𝜇𝑘 and 𝑛𝑘 represent the average and count of residuals as-
signed to code𝑘 , and𝑚 is the EMAdecay rate.We also apply Laplace
smoothing to the EMA count to avoid instability from rare updates.
To prevent representation collapse, we replace infrequently used
codes with randomly sampled embeddings from the current batch,
following SoundStream [9].

The resulting hierarchical code sequence c𝑢 = [c𝑢,1, . . . , c𝑢,𝐿]
defines a multi-level grouping scheme, assigning each user to a
path in a trie-like structure. Higher levels represent coarse semantic
groupings, while deeper levels capture increasingly fine-grained
distinctions. Users sharing longer prefix codes are considered more
similar, enabling efficient multi-resolution grouping where upper
levels offer diversity and lower levels surface harder negatives from
closely related users.

4.2 Hierarchical Group-wise Ranking Objective
The hierarchical user codes c𝑢 = [c𝑢,1, . . . , c𝑢,𝐿] enable structured
negative sampling through multi-level user grouping. At each level
𝑙 , users sharing the same prefix (c𝑢,1, . . . , c𝑢,𝑙 ) form nested clusters
of growing specificity. This structure defines semantically coher-
ent user-item groups at multiple granularities, allowing listwise
ranking losses to be applied within groups of progressively similar
users—supporting harder negative sampling and more effective
ranking supervision.

As illustrated in Figure 3, we recursively partition user-item
pairs into finer groups according to these hierarchical prefixes.
Within each group, the users’ positive items are treated as positive
examples, while users’ negative items serve as negatives. By varying
the group depth 𝑙 , we effectively control the difficulty of sampled
negatives: shallower levels provide easier negatives from loosely
similar users, while deeper levels yield harder negatives from highly

similar users who share more behavioral or contextual overlap and
content exposure.

To train the model on these grouped samples, we adopt the
Regression Compatible Listwise Cross Entropy loss (ListCE)[1],
which replaces the softmax transformation with the sigmoid func-
tion based normalization. This improves compatibility between
ranking and calibration losses under binary relevance.

Let𝐺 (𝑙 )1 ,𝐺
(𝑙 )
2 , . . . ,𝐺

(𝑙 )
𝑀𝑙

denote the groups formed at level 𝑙 , where

each group 𝐺
(𝑙 )
𝑚 contains user-item pairs sharing the same code

prefix. The listwise loss at level 𝑙 is defined as:

L (𝑙 )listce (𝑠,𝑦) =
1
𝑀𝑙

𝑀𝑙∑︁
𝑚=1

∑︁
𝑖∈𝐺 (𝑙 )𝑚

−𝑦 (𝑙,𝑚)
𝑖

log

(
𝜎 (𝑠𝑖 )∑

𝑗∈𝐺 (𝑙 )𝑚
𝜎 (𝑠 𝑗 )

)
(8)

where 𝑠𝑖 is the predicted logit for user-item pair 𝑖 , and 𝜎 (𝑠𝑖 )
represents its sigmoid-transformed score. The corresponding nor-
malized label𝑦 (𝑙,𝑚)

𝑖
is computed as:𝑦 (𝑙,𝑚)

𝑖
=

𝑦𝑖∑
𝑗 ∈𝐺 (𝑙 )𝑚

𝑦 𝑗+𝜖 , ensuring

that labels are normalized within each group 𝐺 (𝑙 )𝑚 .
To balance the contribution from different hierarchy levels, we

introduce an uncertainty-based weighting scheme [5]. Each level 𝑙
is associated with a learnable uncertainty parameter 𝜎𝑙 . The total
hierarchical ranking loss is defined as:

Lhierarchical =
𝐿∑︁
𝑙=1

(
1

2𝜎2
𝑙

L (𝑙 )listwise (𝑠,𝑦) + log𝜎𝑙

)
(9)

This formulation enables the model to adaptively weight ranking
loss from each level based on its estimated uncertainty. As a result,
the model learns to focus on the most informative hierarchy depths
during training, while preserving stable and balanced optimization
across levels.

4.3 Multi-Objective Training Strategy
4.3.1 Objective Function Formulation. Our overall training objec-
tive integrates three components: a primary calibration loss on the
predicted click-through probability from the original user embed-
ding, a secondary calibration loss from the quantized user embed-
ding, and a hierarchical group-wise listwise ranking loss. Formally,
the total loss is defined as:

Lloss = Llogloss (𝑦,𝑦)
+ 𝜆Llogloss (𝑦𝑞, 𝑦)
+ Lhierarchical

(10)

The first term, Llogloss (𝑦,𝑦), serves as the primary loss for cal-
ibrating the model’s click-through probability prediction using
the original user embedding e𝑢 . This component ensures that the
model produces well-calibrated probability estimates suitable for
real-world serving, ensuring compatibility with recommendation
systems that consume predicted probabilities.

The second term, Llogloss (𝑦𝑞, 𝑦), introduces an auxiliary calibra-
tion loss applied to predictions derived from the quantized user em-
bedding e𝑞𝑢 , obtained via residual vector quantization. Importantly,
to enable backpropagation through the non-differentiable quanti-
zation operation, we apply a straight-through estimator (STE):
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Figure 3: Hierarchical Group-wise Ranking Framework. A trie-structured approach organizes user-item pairs into multi-level
user groups based on shared code prefixes. Positive (red) and negative (blue) examples are drawn within each group to supervise
ranking objectives. Varying the group depth enables learning to rank over increasingly fine-grained user similarity.

e𝑞𝑢 = e𝑢 + stop_gradient(ê𝑢 − e𝑢 ) (11)

Here, ê𝑢 =
∑𝐿
𝑙=1 C

(𝑙 )
c𝑢,𝑙 represents the quantized embedding. This

formulation makes e𝑞𝑢 match ê𝑢 in the forward pass, while gradi-
ents flow through e𝑢 in the backward pass, enabling user encoder
training with quantization-based regularization.

Although e𝑞𝑢 is not used during serving, this auxiliary loss reg-
ularizes the shared user network by encouraging it to produce
embeddings that are not only predictive but also structurally com-
pressible and cluster-aware. Specifically, it helps align the user
embedding space with the quantized codebook space, promoting
smoother transitions and more stable quantization behavior. This
alignment facilitates better codebook utilization and supports dy-
namic clustering under shifting user distributions. As a result, it
improves training stability by maintaining a semantically meaning-
ful and adaptive latent structure.

The final component, Lhierarchical, is the proposed hierarchical
group-wise listwise ranking loss. It utilizes trie-structured user
codes generated via residual vector quantization to group user-item
pairs into semantically coherent user clusters at multiple levels of
granularity. By applying the ranking loss within these groups, the
model receives user cluster-aware ranking supervision using pro-
gressively harder negatives drawn from similar users. This structure
improves ranking quality without incurring the cost of real-time
context collection or explicit nearest-neighbor retrieval.

4.3.2 Clustering Adaptability. Traditional vector quantization frame-
works such as VQ-VAE [7] typically employ a commitment loss
(e.g., ∥e𝑢 − ê𝑢 ∥2) to explicitly align the continuous embedding with
its quantized counterpart. However, we omit this component in our
framework due to the dynamic nature of real-time recommenda-
tion settings, where user embeddings must continually adapt to
evolving preferences, behaviors, and contextual signals.

Enforcing a commitment loss would constrain user embeddings
to remain near static quantized representations, limiting their ability
to transition across clusters and adapt in response to new interac-
tions. Instead, we allow the primary calibration loss Llogloss (𝑦,𝑦)
to guide representation learning, maintaining expressiveness and

adaptability. To softly encourage alignment between the embed-
ding and its quantized version, we incorporate an auxiliary cal-
ibration loss Llogloss (𝑦𝑞, 𝑦) applied to the quantized prediction.
This auxiliary loss serves as a task-driven regularizer, encouraging
meaningful and quantization-friendly embeddings without rigid
constraints.

Our approach supports flexible and generalizable representation
learning under streaming or non-stationary conditions, aligning
with insights from recent work on real-time indexing [2], which
similarly avoids commitment loss to preserve adaptability.

5 EXPERIMENTS
In this section, we evaluate our framework on two large-scale pub-
lic datasets, demonstrating that hierarchical group-wise ranking
significantly improves model performance. During experiments,
we focus on evaluating the effectiveness of our proposed models
and answering the following questions.
• Q1: How does our proposed framework perform on rank-
ing tasks? Is it effective and efficient in extremely high-
dimensional and sparse data settings?
• Q2: How well does our framework handle user cold-start
scenarios with limited interaction history? Can it maintain
robust performance when user signals are sparse?

5.1 Experiment Setup
5.1.1 Datasets. We evaluate our proposed model using two pub-
licly available real-world datasets commonly utilized in research:
KuaiRand and Taobao. The data is randomly divided into three
subsets: 70% for training, 10% for validation, and 20% for testing.
We applied stratified sampling to ensure that each user has positive
samples in every data subset.
• KuaiRand1 is a recommendation dataset collected from the
video-sharing mobile app Kuaishou.
• Taobao2 is a Taobao E-commerce dataset released Alibaba.

5.1.2 Evaluation Metrics. For evaluating the ranking performance,
we adopt LogLoss and AUC metric and further compute the Group
1https://kuairand.com/
2https://tianchi.aliyun.com/dataset/649
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AUC (GAUC) to measure the goodness of intra-user ranking ability.
Group AUC calculates the AUC for each user and aggregates them
using a weighted average based on the number of impressions,
capturing per-user ranking quality and better reflecting real-world
performance.

5.2 Model Performance Comparison (Q1)

Table 1: Performance Comparison of Different Ranking Ob-
jectives on KuaiRand and Taobao Datasets.

Objective KuaiRand Taobao
LogLoss AUC GAUC LogLoss AUC GAUC

LogLoss 0.5735 0.7510 0.6911 0.2011 0.6420 0.5708
LogLoss + PairwiseLogistic 0.5723 0.7524 0.6921 0.2002 0.6435 0.5728
LogLoss + SoftmaxCE 0.5727 0.7520 0.6920 0.2005 0.6428 0.5720
LogLoss + ListCE 0.5709 0.7537 0.6932 0.1995 0.6443 0.5734
JRC 0.5713 0.7533 0.6930 0.1993 0.6540 0.5732
GroupCE (proposed) 0.5681 0.7556 0.6953 0.1982 0.6556 0.5745

The overall performance of different losses is listed in Table 1.
We have the following observations in terms of objective function
effectiveness:
• LogLoss serves as the baseline objective and yields the lowest
performance across both datasets, demonstrating the limitations
of using a pure calibration loss without ranking supervision.
• LogLoss + PairwiseLogistic and LogLoss + SoftmaxCE show
consistent improvements over the baseline, highlighting the
benefit of incorporating pairwise or listwise ranking losses into
model training.
• LogLoss + ListCE and JRC achieve further gains, demonstrat-
ing that listwise ranking objectives with calibration-compatible
designs lead to stronger overall performance.
• GroupCE achieves the best performance across all metrics.
These results validate the effectiveness of our hierarchical group-
wise ranking strategy, which enables progressively harder nega-
tive sampling through structured user clustering.

5.3 Cold Start Capability (Q2)
To assess the model’s robustness in user cold-start scenarios, we
evaluate its performance on user cohorts with limited interaction
history. Since our model leverages hierarchical user codes for struc-
tured contrastive learning, we hypothesize that it can capture dis-
criminative patterns at the cluster level, enabling it to maintain
ranking quality even when individual user signals are sparse.

Table 2: Performance Comparison in Cold-Start Scenarios on
KuaiRand Dataset.

Objective KuaiRand (Cold) KuaiRand (Warm)
LogLoss AUC GAUC LogLoss AUC GAUC

LogLoss 0.6189 0.7298 0.6718 0.5683 0.7454 0.6945
LogLoss + PairwiseLogistic 0.6171 0.7305 0.6735 0.5670 0.7461 0.6955
LogLoss + SoftmaxCE 0.6175 0.7302 0.6730 0.5674 0.7458 0.6952
LogLoss + ListCE 0.6137 0.7308 0.6732 0.5662 0.7469 0.6962
JRC 0.6145 0.7308 0.6738 0.5664 0.7475 0.6968
GroupCE (proposed) 0.6115 0.7320 0.6786 0.5636 0.7489 0.6986

We stratify users by the number of impressions in the KuaiRand
training set into cold (≤ 20) and warm (20− 50) groups, and assess

model performance on the corresponding users in the test set. As
shown in Table 2, our proposed GroupCE framework consistently
outperforms baselines across both user segments, with the most
notable GAUC gains observed in the cold-start group. These results
indicate that hierarchical clustering introduces effective user-level
priors, enabling better ranking performance even with limited user
history, a promising direction for addressing cold-start challenges
in recommendation systems.

6 CONCLUSION
We propose a Hierarchical Group-wise Ranking Framework that en-
hances CTR/CVR model performance by leveraging residual vector
quantization to construct hierarchical user clusters for structured,
cluster-aware ranking supervision. By grouping user-item pairs
into semantically coherent clusters, our framework enables efficient
and effective hard negative sampling without requiring real-time
context collection or incurring the computational overhead of cross-
user retrieval. We introduce a hierarchical listwise ranking loss to
model item ordering across varying levels of user similarity and
complement it with calibration objectives applied to both original
and quantized embeddings. Extensive experiments across multiple
datasets demonstrate consistent improvements in both ranking
accuracy and calibration quality, particularly under sparse user be-
havior scenarios. The proposed framework provides a scalable and
generalizable solution for industrial recommendation systems and
opens new directions for ranking optimization via quantization-
based hierarchical clustering, enabling efficient learning-to-rank
under limited user feedback.
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