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ABSTRACT	
User	journeys	in	e-commerce	routinely	violate	the	one-to-one	
assumption	that	a	clicked	item	on	an	advertising	platform	is	the	
same	 item	 later	 purchased	 on	 merchant’s	 website/app.	 For	
signi?icant	 number	 of	 converting	 sessions	 on	 our	 platform,	
users	 click	product	A	but	buy	product	B—the	Click	A,	Buy	B	
(CABB)	 phenomenon.	 Training	 recommendation	 models	 on	
raw	 click-conversion	 pairs	 therefore	 rewards	 items	 that	
merely	correlate	with	purchases,	leading	to	biased	learning	and	
sub-optimal	 conversion	 rates.	 We	 reframe	 conversion	
prediction	 as	 a	 multi-task	 problem	 with	 separate	 heads	 for	
Click	A	→	Buy	A	(CABA)	and	Click	A	→	Buy	B	(CABB).	To	isolate	
informative	 CABB	 conversions	 from	 unrelated	 CABB	
conversions,	 we	 introduce	 a	 taxonomy-aware	 collaborative	
?iltering	weighting	scheme	where	each	product	is	?irst	mapped	
to	 a	 leaf	 node	 in	 a	 product	 taxonomy,	 and	 a	 category-to-
category	 similarity	 matrix	 is	 learned	 from	 large-scale	 co-
engagement	 logs.	 This	 weighting	 ampli?ies	 pairs	 that	 re?lect	
genuine	substitutable	or	complementary	relations	while	down-
weighting	 coincidental	 cross-category	 purchases.	 Of?line	
evaluation	 on	 e-commerce	 sessions	 reduces	 normalized	
entropy	by	13.9	%	versus	a	last	click	attribution	baseline.	An	
online	 A/B	 test	 on	 live	 traf?ic	 shows	 +0.25%	 gains	 in	 the	
primary	business	metric.		
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•	Information	 systems	 →	 Recommender	 systems;	 Online	
advertising;	Collaborative	?iltering		
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1	 Introduction	
In	 e-commerce	 recommendation	 systems,	 a	 common	
assumption	is	that	if	a	user	clicks	on	a	product	on	an	advertising	
platform	 and	 later	 converts	 i.e.	 makes	 a	 purchase	 on	 the	
merchant’s	website/app,	then	that	conversion	is	attributed	to	
that	 same	 clicked	 product.	 However,	 user	 behavior	 often	
violates	 this	 assumption.	 A	 user	 may	 click	 Product	 A	 but	
eventually	purchase	a	different	Product	B	–	a	scenario	we	refer	
to	as	the	Click	A,	Buy	B	(CABB)	problem	(Figure	1).	These	CABB	
scenarios	are	not	rare	 in	sessions	where	users	have	multiple	
shopping	 intent	 and	 advertisers’	 catalogs	 have	 very	 large	
volumes	 of	 items.	 In	 fact,	 on	 our	 platform	 we	 find	 that	 a	
significant	 number	 of	 conversions	 exhibit	 the	 CABB	
phenomenon.	Naively	combining	CABA	and	CABB	conversions	
while	 building	 conversion	 models	 can	 lead	 to	 suboptimal	
predictions.	 If	 a	 model	 is	 trained	 assuming	 all	 conversions	
happen	 on	 the	 last	 clicked	 item,	 it	 will	 learn	 to	 overvalue	 a	
subset	of	highly	popular	and	click-inducing	products.	As	noted	
in	 prior	work	 on	 attribution	 [1],	 giving	 all	 credit	 to	 the	 last	
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touched	item	or	event	can	introduce	a	bias	towards	rewarding	
clicks	 that	 are	 simply	 correlated	 with	 conversions,	 but	 that	
might	 not	 be	 causing	 them.	 Further	 naively	 modeling	 CABB	
conversions	impacts	user	experience	as	well.	A	recommender	
that	doesn’t	account	for	CABB	may	stop	showing	certain	helpful	
reference	 items,	 reducing	 the	 diversity	 of	 recommendations.	
Users	might	then	miss	out	on	discovering	products	that	could	
be	 useful.	 In	 summary,	 the	 CABB	 problem	 leads	 to	 biased	
learning	and	suboptimal	recommendations.	
To	 address	 these	 issues,	 we	 propose	 a	 novel	 approach	 that	
reframes	 recommendation	 conversion	 prediction	 as	 a	multi-
task	 learning	 problem	 encompassing	 both	 direct	 and	 cross-
item	conversions.	By	explicitly	modeling	CABB	events,	we	aim	
to	de-bias	 the	 learning	process	 and	 capture	 true	user	 intent.	
Our	method	leverages	similarity	between	products	to	discern	
when	 a	 click	 on	 A	 that	 led	 to	 purchase	 of	 B	 was	 likely	 a	
purposeful	 substitution	 (e.g.	 A	 and	 B	 are	 similar	 items)	 or	
versus	a	complete	switch	of	intent.	

2	 Related	Works	
Early	multi-touch	attribution	work	paved	the	way	for	model-
based	conversion	attribution	instead	of	heuristic	rules	like	last	
click.	 Shao	and	Li	 [1]	pioneered	 this	direction	with	a	 logistic	
regression-based	 model	 that	 learns	 each	 channel’s	
contribution	 from	 data.	 By	 employing	 a	 bagged	 logistic	
regression	ensemble,	their	method	achieved	stable	attribution	
estimates	 for	 each	 advertising	 channel	 while	 maintaining	
predictive	 accuracy.	 Building	 on	 such	 foundations,	 more	
complex	 machine	 learning	 models	 have	 been	 applied.	 Deep	
sequence	 models	 (RNNs,	 Transformers)	 allow	 attribution	 to	
consider	the	order	and	context	of	ad	exposures.	Several	works	
integrate	attention	mechanisms	 to	 let	 the	model	 learn	which	
touchpoints	 are	 most	 influential	 for	 conversion	 [2,	 3].	 For	
example,	a	self-attention	layer	can	weight	each	interaction	in	a	
user’s	 journey	and	produce	a	probabilistic	credit	assignment.	
Kumar	 et	 al.	 showed	 that	 attention-based	 RNN	 models	 can	
indeed	distribute	credit	across	multiple	touches	[3].		

	

Figure	 1:	 Showing	 three	 different	 post-click	 purchase	
scenarios,	 Scenario	 1	 (green)	 –	 the	 same	 product	 is	

purchased	(Click	A	→	Buy	A,	CABA);	Scenario	2	(orange)	–	
a	 complementary	 product	 is	 purchased	 (meaningful	
CABB);	 and	 Scenario	 3	 (red)	 –	 an	 unrelated	 product	 is	
purchased	(noisy	CABB)		

In	contrast	 to	deep	sequence-based	attribution	models	 [2,	3]	
that	 leverage	 RNN’s	 or	 transformers	 to	 learn	 credit	
assignments	 over	 entire	 user	 journeys,	 we	 propose	 a	
similarity-driven	 reweighting	 approach	 that	 focuses	 on	
product	 relationships.	 Our	 method	 maps	 each	 product	 to	 a	
category	(using	a	taxonomy	or	category	overlap)	and	employs	
a	 collaborative	 filtering	model	 at	 the	 category	 level	 to	 learn	
pairwise	 similarity	 between	 categories.	 This	 yields	 a	
standalone	 attribution	weighting	mechanism:	 if	 a	 user	 clicks	
product	 A	 but	 ultimately	 purchases	 product	 B,	 the	 credit	
assigned	to	the	A	click	is	scaled	by	the	similarity	between	A’s	
category	and	B’s	category.	Such	a	strategy	directly	addresses	
the	 “click	 A,	 buy	 B”	 problem,	 ensuring	 that	 related	 product	
interactions	 receive	 due	 credit	 even	 when	 the	 exact	 items	
differ.	Unlike	complex	sequential	neural	models	which	attempt	
to	capture	long-range	dependencies	but	often	behave	as	black-
boxes,	 the	 similarity-based	 approach	 is	 inherently	
interpretable	–	the	contribution	of	each	click	can	be	explicitly	
traced	to	category-level	similarity	scores.	It	is	also	lightweight	
to	 deploy,	 relying	 on	 precomputed	 taxonomy	mappings	 and	
similarity	 matrices	 rather	 than	 heavy	 real-time	 sequence	
modeling.	 Moreover,	 by	 abstracting	 user	 behavior	 to	 the	
category	level,	our	method	is	more	robust	to	data	sparsity	and	
misalignment	in	long	user	buying	journeys	i.e.	even	when	exact	
product	sequences	are	infrequent	or	user	paths	are	lengthy,	it	
can	still	generalize	attribution	based	on	broader	item	affinities.	
Multi-Task	 Learning	 (MTL)	 has	 been	 widely	 explored	 in	
recommendation	and	advertising	 systems	 to	 jointly	optimize	
for	 multiple,	 often	 correlated,	 objectives.	 General	 MTL	
frameworks	[4,	5]	have	laid	the	groundwork	for	architectures	
that	 can	 learn	 shared	 representations	 while	 specializing	 for	
distinct	 tasks.	 In	 the	 context	 of	 conversion	 modeling,	 a	
prominent	 line	 of	 work	 focuses	 on	 decomposing	 post-click	
outcomes	 sequentially.	 For	 instance,	 the	 Entire	 Space	Multi-
Task	 Model	 (ESMM)	 [6]	 effectively	 estimates	 post-click	
conversion	rate	by	modeling	both	click-through	rate	and	click-
through	conversion	rate,	thereby	addressing	data	sparsity	and	
sample	selection	bias.		
To	the	best	of	our	knowledge,	no	prior	attribution	or	multi-task	
conversion	 model	 explicitly	 disentangles	 Click	 A	 →	 Buy	 B	
events	or	learns	to	trust	them	only	when	the	purchased	item	is	
semantically	 related	 to	 the	 clicked	 one.	 Consequently,	 our	
CABA–CABB	 decomposition	 with	 taxonomy-aware	 similarity	
weighting	 constitutes	 the	 first	 end-to-end	 framework	 that	
directly	models	and	denoises	cross-item	conversions	in	large-
scale	e-commerce	recommendations	

3	 Proposed	Approach	
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3.1	 Problem	Formulation	as	Multitask	
Learning	

We	formulate	the	recommendation	conversion	prediction	as	a	
multitask	learning	problem	with	two	related	objectives:	

• Task	1:	CABA	prediction	(Click	A	→	Buy	A)	–	predict	
the	 probability	 that	 a	 user	 will	 purchase	 the	 same	
product	they	clicked.	

• Task	2:	CABB	prediction	(Click	A	→	Buy	B)	–	predict	
the	probability	 that	 a	user’s	 click	on	product	A	will	
result	in	a	purchase	of	a	different	product	B.	

We	 train	 a	 single	 deep	 neural	 network	 model	 with	 shared	
features	 and	 representations	 i.e.	 embedding	 layers	 but	 has	
separate	output	layers	and	loss	terms	for	each	task.	Multitask	
learning	 allows	 shared	 knowledge	 transfer	 between	 tasks	
(Figure	2).	For	example,	signals	that	strongly	indicate	high	user	
intent	 could	 boost	 both	 the	 probability	 of	 CABA	 and	 CABB,	
whereas	 signals	 of	 relative	 dissatisfaction	 e.g.	 quick	 bounce	
from	 A’s	 page	might	 raise	 CABB	 likelihood	 and	 lower	 CABA	
likelihood.	By	 training	on	both	outcomes,	 the	model	 learns	a	
nuanced	 understanding	 of	 post-click	 behavior	 that	 a	 single-
task	model	would	miss.	

3.2	 Training	Data	and	Label	Partitioning	
The	training	data	for	our	method	is	derived	from	e-commerce	
session	 logs,	 which	 contain	 sequences	 of	 user	 interactions	
(product	 impressions,	 clicks,	 and	 conversions).	We	construct	
labeled	 examples	 at	 the	 granularity	 of	 user,	 session,	 product	
clicked,	conversion	label.	Each	such	example	is	associated	with	
two	binary	labels:	

• y₁	(CABA	label):	1	 if	 the	user	ended	up	purchasing	
product	A	in	that	session,	0	otherwise.	

• y₂	(CABB	label):	1	if	the	user	purchased	something	
in	the	session	other	than,	0	otherwise.	

	

Figure	2:	Two-head	multi-task	conversion	model	

In	many	cases	y₁	=	y₂	=	0	(no	conversion	from	that	click	at	all).	
And	it’s	possible	(though	relatively	rare	in	a	short	session)	that	
both	could	be	1	if	the	user	bought	multiple	items	including	A	
and	others	–	in	our	data	preprocessing	we	treat	each	purchase	
event	 separately.	 Essentially,	we	 partition	 conversion	 events	

into	two	buckets:	same-item	conversions	feed	the	CABA	task,	
and	other-item	conversions	feed	the	CABB	task.	
A	challenge	with	this	labeling	is	that	the	CABB	category	can	be	
noisy.	It	treats	all	instances	of	click	A,	buy	B	≠	A	as	equal,	even	
though	 some	 B’s	 might	 be	 closely	 related	 to	 A	 while	 others	
might	be	completely	unrelated.	Training	a	model	to	predict	a	
generic	 “bought	 something	 else”	 probability	 could	 be	
misleading	and	does	not	incentivize	the	model	to	capture	users	
true	shopping	intent.	To	address	this,	we	introduce	a	similarity	
measure	(next	section)	between	products	and	use	it	to	weight	
the	CABB	training	examples.	

3.3	 Category-Level	Similarity	via	Product	
Taxonomy	

We	 create	 similarity	 metric	 between	 product	 ids	 to	 weight	
CABB	training	examples	in	the	following	manner:	

• Taxonomy	Mapping:	Each	product	is	mapped	to	its	
corresponding	 leaf	 node	 in	 a	 static,	 hierarchical	
product	 taxonomy	 (e.g.,	Home	→	 Kitchen	 →	 Coffee	
Makers	 or	 Grocery	 →	 Beverages	 →	 Coffee	 Beans).	
Anchoring	 at	 the	 leaf	 level	 prevents	 over-
generalization,	 reduces	 sparsity	 by	 pooling	
engagement	across	many	item	ids	that	share	the	same	
fine-grained	category,	and	preserves	user	 intent	 for	
close-substitute	items	within	a	category.	

• Category	 Co-Engagement	 Signals:	 Instead	 of	
computing	 similarity	 directly	 between	 individual	
items,	 we	 aggregate	 user	 engagement	 at	 the	 leaf	
category	 level.	 Using	 session	 logs	 of	 user	 behavior	
(clicks,	 add-to-cart	 actions,	 purchases,	 etc.),	 we	
measure	 how	 often	 products	 from	 category	 X	 and	
category	Y	are	co-engaged	within	the	same	sessions.	
For	 example,	 if	 many	 users	 who	 click	 on	 items	 in	
Coffee	Makers	also	end	up	purchasing	items	in	Coffee	
Beans,	 this	 indicates	 a	 strong	 behavioral	 linkage	
between	these	two	categories	despite	their	different	
taxonomy	mappings.	

• Category-to-Category	 Similarity	 Model:	 To	 learn	
category-to-category	 similarity,	 we	 adopt	 a	 classic	
item-to-item	 collaborative-filtering	 formulation	
applied	 at	 the	 leaf-category	 level	 [7].	 First,	 each	
category	 c	 is	 embedded	 in	 user	 space	 as	 a	 high-
dimensional	 vector	𝑣!	𝜖	ℝ(|$|) 	whose	𝑢&' 	coordinate	
accumulates	 that	 user’s	 interactions	 with	 the	
category:		

																(𝑣!)( = 𝑤!)*!+   ∗  #𝑐𝑙𝑖𝑐𝑘𝑠 + 𝑤!,-&   ∗ #𝑎𝑑𝑑_𝑡𝑜_𝑐𝑎𝑟𝑡𝑠	 +
																																		𝑤.(-!',/0   ∗  #𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠+	. . ..																						(1)																									

Event-type	 weights	 𝑤	up-weight	 higher-intent	
signals	(e.g.,	purchases)	while	retaining	lower-intent	
indicators	 (e.g.,	 clicks)	 for	 additional	 context.	
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Pairwise	 cosine	 similarity	 between	 these	 vectors	
yields	the	category-similarity	matrix.		

																														𝑆>𝑐* , 𝑐1@ =
2!"⋅2!#

|2!"|$ |2!#|$
, 	𝑆>𝑐* , 𝑐1@ ∈ [0,1]												(2)																						

Because	 the	 interaction	 counts	 are	 non-negative,	
cosine	values	naturally	lie	in	[0,1];	categories	whose	
items	 are	 frequently	 co-engaged	 by	 the	 same	 users	
receive	 scores	 approaching	 1,	 whereas	 unrelated	
categories	 trend	 toward	 0.	 For	 any	 product	 pair	
(𝐴, 𝐵),	we	then	look	up	their	respective	leaf	categories	
and	assign	the	example-level	weight:	

																													𝛼(56) = 𝑆>𝑐𝑎𝑡(𝐴), 𝑐𝑎𝑡(𝐵)@ ∈ [0,1]																			(3)	

thereby	 capturing	 both	 strong	 substitution	 signals	
within	 a	 category	 and	 meaningful	 cross-category	
complements	 exposed	 through	 collective	 user	
behavior.	

3.4	Multi-Task	Loss	with	Category-Similarity	
Weighting	

We	embed	the	category-level	similarity	signal	from	Section	3.3	
directly	into	the	multi-task	objective	so	that	the	model	learns	
to	trust	Click	A	→	Buy	B	(CABB)	events	only	when	the	clicked	
and	 purchased	 products	 are	 weighted	 significantly	 by	 the	
similarity	 score.	 For	 a	 batch	 B	 of	 click	 events,	 the	 two	 task-
specific	cross-entropy	losses	are:	

					ℒCABA = −∑ [𝑦: log 𝑦:P+ (1 − 𝑦:) log(1 − 𝑦:P)](5,6)∈ℬ 									(4)	

ℒCABB = −∑ α56[𝑦> log 𝑦>P+ (1 − 𝑦>) log(1 − 𝑦>P)](5,6)∈ℬ 						(5)						

The	total	multi-task	objective	combines	the	two	with	a	tunable	
balance	λ:	

																															ℒ = ℒCABA + λ ℒCABB																																								(6)																																																							
With	this	formulation,	the	model	effectively	de-biases	
conversion	attribution	by	grounding	cross-item	learning	in	
semantic	as	well	as	engagement	driven	category	relationship	
between	products.	

4	 OfQline	Experiments	
We	 conducted	 extensive	 experiments	 on	 an	 internal	
proprietary	 e-commerce	 dataset	 to	 evaluate	 the	 proposed	
CABB-aware	 multitask	 model.	 The	 dataset	 consists	 of	 user	
sessions	 from	 our	 online	 e-commerce	 advertising	 platform,	
including	product	impressions,	clicks,	and	purchases	for	opt-in	
users	 only.	 We	 withhold	 specific	 dataset	 details	 for	
confidentiality	but	note	 that	 it	 is	 large-scale	and	reflective	of	
real-world	shopping	behavior	with	abundant	CABB	instances.	
Our	 experimental	 study	 is	 designed	 to	 answer	 four	 key	
research	questions:	
(RQ-1)	Overall	Performance:	Does	the	multitask	CABA+CABB	
model	 improve	 overall	 recommendation	 performance	

compared	 to	 a	 baseline	 that	 ignores	 the	 CABB	 issue	 i.e.	 a	
standard	last-click	conversion	attribution	model?		
(RQ-2)	 Performance	 breakdown	 by	 CABA	 vs	 CABB:	 Does	
our	model	improve	performance	of	both	CABA	and	CABB	tasks?		
(RQ-3)	Effect	of	Embedding	Choice:	How	does	the	choice	of	
item	embedding	influence	the	model’s	performance?		
(RQ-4)	 Feature	 importance	 analysis:	 How	 does	 CABA	 and	
CABB	tasks	differ	with	respect	to	important	features?	
We	 use	 Normalized	 Entropy	 (NE)	 to	 evaluate	 the	 ranking	
quality	and	calibration	of	conversion	predictions.	Normalized	
entropy	 is	 essentially	 the	 model’s	 cross-entropy	 loss	
normalized	by	the	entropy	of	the	base	rateshagunsodhani.com.	
It	 is	 a	 standard	 metric	 in	 advertising	 and	 recommender	
evaluations	 for	 probabilistic	 predictions	 [8];	 lower	 NE	
indicates	better	performance	(with	NE	=	1	meaning	the	model	
is	no	better	 than	predicting	the	average	conversion	rate,	and	
NE	=	0	indicating	a	perfect	model).		

4.1	 RQ-1	Overall	Performance		
To	 answer	 RQ-1	 we	 benchmark	 our	 final	 multitask	 model	
against	 two	baselines:	1)	Baseline	1	 –	 is	 a	 classic	 single	 task	
conversion	model	which	attributes	all	 the	conversions	 to	 the	
last	 clicked	 product	 2)	 Baseline	 2	 –	 considers	 only	 CABA	
conversion	 data	 to	 prevent	 biasing	 the	 model	 towards	
unrelated	conversions.		
As	 shown	 in	 Table	 1,	 our	 final	 model	 achieved	 significantly	
better	overall	NE	than	the	baselines.	The	NE	of	our	final	model	
was	0.495,	compared	to	0.575	for	the	single-task	Baseline-1(a	
13.9%	reduction,	which	is	a	substantial	gain	in	this	metric),	and	
0.547	for	Baseline-2	which	only	used	CABA	conversions.	These	
results	validate	our	intuition	that	decoupling	CABA,	CABB	tasks	
and	using	similarity	weights	to	denoise	CABB	conversions	can	
improve	the	model.	Note	that	since	our	model	performs	better	
than	 Baseline-2,	 it	 demonstrates	 that	 using	 CABB	 data	 with	
similarity	weighting	adds	incremental	value	to	our	final	model.		

Table	1:	Overall	NE	Comparison		

Test	Variant	 NE	
Baseline	1	 0.575	
Baseline	2	 0.547	
Multitask	Model	 0.495	

4.2	 RQ-2	Performance	Breakdown	by	CABA	
vs	CABB	Tasks	
To	understand	how	the	multitask	formulation	balances	same-
item	 (CABA)	 and	 cross-item	 (CABB)	 performance,	we	 report	
Normalized	 Entropy	 for	 each	 task	 while	 sweeping	 the	
weighting	coefficient	λ	in	Eq.	(6).		
As	 shown	 in	 Table	 2,	 the	 single	 task	 last	 clicks	 attribution	
baseline	 which	 does	 not	 distinguish	 CABA	 and	 CABB	
conversions	 performs	 the	 worst	 on	 both	 tasks	 separately.	
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Removing	CABB	supervision	(λ	=	0)	 improves	CABA	task	but	
performs	badly	on	CABB	task.	In	our	proposed	formulation	as	
λ	 increases,	CABB	NE	 improves	monotonically	 from	0.692	→	
0.505	while	 the	performance	on	CABA	 is	 relatively	 the	 same	
showing	the	benefit	of	weighted	cross-item	supervision.	
These	results	validate	our	hypothesis:	separating	and	properly	
weighting	CABB	events	corrects	attribution	bias	and	yields	a	
more	 balanced	 predictor	 than	 either	 conventional	 last-click	
training	or	a	CABA-only	model.		

Table	2:	Impact	of	CABB-loss	weight	λ	on	task-level	NE		

λ	(CABB	weight) CABA	NE	 CABB	NE	
Baseline	(Single	task)	 0.512	 0.643	
0.0	 0.398	 0.692	
0.1	 0.409	 0.651	
0.25		 0.419	 0.581	
0.50	 0.432	 0.550	
0.75	(Selected)	 0.451	 0.519	
0.9		 0.479	 0.505	

4.3	RQ-3	Effect	of	Embedding	Choice		
We	also	compared	the	effect	of	 the	similarity	 term	 in	Eq.	 (3)	
which	tells	the	model	which	Click	A	→	Buy	B	events	to	trust.	We	
evaluate	 three	ways	of	 computing	 the	 similarity	weight	 each	
plugged	 into	 the	 same	 multitask	 model	 (λ	 =	 0.75,	 identical	
architecture,	 data	 splits,	 and	 hyper-parameters)	 so	 that	 any	
performance	difference	is	attributable	solely	to	the	weighting	
scheme.	(1)	Static	=	1	(“No-Weight”)	assigns	𝛼(56)=	1	for	every	
click–purchase	 pair,	 treating	 all	 CABB	 events	 as	 equally	
informative	 and	 thus	 ignoring	 product	 relatedness.	 (2)	
similarity	 from	 i2i	 embeddings	 learnt	 from	 co-engagement	
between	 products	 which	 likely	 misses	 the	 semantic	 /	
substitutable	 relationship	 	 (3)	 Taxonomy	 +	 Collaborative	
Filtering	(“Ours”)	maps	each	product	to	a	leaf	in	the	merchant’s	
hierarchical	 taxonomy,	 then	 learns	 a	 category-to-category	
similarity	 matrix	 from	 large-scale	 co-engagement	 logs,	
enabling	𝛼(56) 	to	 reflect	 both	 substitutable	 (same-category)	
and	 complementary	 (cross-category)	 relationships	 grounded	
in	real	shopping	behavior.	
As	 shown	 in	 Table	 3,	 simply	 adding	 every	 CABB	 example	
equally	 (‘Static	 =	 1’)	 injects	 noise:	 CABA	 NE	 improves	
significantly	after	de-noising	the	data	via	similarity	weighting	
from	 0.478	 to	 0.441.	 Item	 level	 i2i	 embedding	 similarity	
recover	some	of	the	gap	but	likely	suffers	from	sparsity	and	lack	
of	 explicit	 semantic	 information.	 Note	 that	 because	 𝛼(56)	
down-weights	Click	A	→	Buy	B	pairs,	 the	model	 intentionally	
focuses	on	a	cleaner	subset	of	CABB	events.	When	evaluated	
uniformly	over	all	CABB	instances,	this	yields	a	slight	increase	
in	CABB	NE	(Table	3).	However,	the	large	CABA	gain	indicate	
that	discounting	noisy	cross-item	conversions	is	a	worthwhile	
trade-off.	

These	 results	 confirm	 that	 the	 way	 similarity	 is	 modelled	
critically	 influences	how	effectively	 the	multitask	 framework	
learns	 from	 cross-item	 conversions.	 A	 taxonomy-grounded,	
engagement	 aware	 signal	 captures	 both	 substitution	 and	
complementarity,	 unlocking	 the	 full	 benefit	 of	 CABB	
supervision.	

Table	3:	Effect	of	Similarity	Weighting	Schemes	on	NE	

Test	Variant	 CABA	NE	 CABB	NE	
Static	=	1	(No-Weight)	 0.478	 0.552	
I2I	embedding	similarity		 0.462	 0.558	
Taxonomy	+	CF	(Ours)	 0.441	 0.563	

4.4	RQ-4	Feature	importance	analysis		
To	understand	differences	among	the	top	ranked	features	for	
CABA	and	CABB	tasks,	we	ran	feature	importance	analysis	for	
the	top	ranked	features	for	each	of	these	tasks	respectively.		

• CABA	Feature	Importance	–	Most	of	the	top	ranked	
features	 for	 CABA	 tasks	 were	 broadly	 related	 to	
personalization	 e.g.	 users’	 past	 interaction	 with	
clicked	 product	 or	 similar	 products,	 time	 gap	 since	
the	 user	 interacted	with	 clicked	 product	 or	 similar	
products.	

• CABB	Feature	Importance	–	Most	of	the	top	ranked	
features	for	CABB	tasks	were	broadly	related	to	semi-
personalization	 (due	 to	 similarity	 weighting)	 and	
overall	 popularity	 e.g.	 advertiser	 historic	 CVR	
globally,	 users’	 past	 purchases	 with	 same/similar	
category	 products.	 Note	 that	 even	 after	 similarity	
weighting,	we	expect	some	global	popularity	features	
to	show	up	in	CABB	because	similarity	metrics	is	also	
learnt	on	co-engagement	data	which	is	dominated	by	
popular	products.					

Qualitative	 analysis	 of	 important	 features	 con?irmed	 our	
intuition	that	CABA	task	is	in?luenced	much	more	by	features	
targeting	personalization	whereas	CABB	task	is	in?luenced	by	
semi	 personalization-based	 features	 due	 to	 the	 similarity	
weighting	scheme	used	in	rebalancing	its	loss.	

5	 Online	Deployment	
To	 validate	 real-world	 performance,	 we	 deployed	 our	 best	
offline	model	in	a	live	A/B	test	on	our	e-commerce	platform’s	
recommendation	 system.	 The	 test	 ran	 for	 two	 weeks,	
comparing	 our	 new	 model	 against	 the	 existing	 production	
recommender	 (which	 was	 based	 on	 single	 task	 last-click	
attribution).	The	reported	 improvements	 in	business	metrics	
are	statistically	significant.	
The	 results	 in	 the	 online	 setting	 mirrored	 the	 offline	 gains,	
demonstrating	 the	 practical	 value	 of	 our	 approach.	 The	
treatment	 delivered	 a	 +0.25	 %	 lift	 in	 our	 primary	 business	
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metric	 (proprietary	 metric	 correlated	 with	 the	 long-term	
health	 of	 our	 business).	 Crucially,	 the	 live	 experiment	 also	
showed	an	increase	in	CABA	rate	by	1.27%	i.e.	the	proportion	
of	sessions	where	the	user’s	purchase	was	from	the	same	initial	
click	 rose	 supporting	 the	 claim	 that	 our	 model	 kept	
recommendations	more	personalized	 and	 aligned	with	users	
shopping	 intent.	 From	 a	 business	 perspective,	 these	
improvements	 translate	 to	 a	 better	 user	 experience	 and	
potentially	 higher	 revenue.	 By	mitigating	 the	 Click	 A,	 Buy	 B	
problem,	 the	 taxonomy-aware	 recommender	not	only	avoids	
the	pitfall	of	misleading	recommendations	but	also	capitalizes	
on	genuine	 cross-sell	 opportunities	 (through	complementary	
items).	We	 continue	 to	monitor	 longer-term	 impacts	 such	as	
repeat	 purchase	 rate	 and	 customer	 retention,	 hypothesizing	
that	 the	 more	 contextually	 relevant	 recommendations	 will	
foster	greater	trust	in	the	platform’s	suggestions	over	time.	

6	 Limitations	
While	the	proposed	taxonomy-aware	co-engagement	similarity	
weighting	 is	 central	 to	 the	model's	 success	 in	 distinguishing	
meaningful	 CABB	 events,	 this	 approach	 introduces	 some	
limitations.	Firstly,	the	system's	efficacy	is	heavily	dependent	
on	 the	 quality	 and	 granularity	 of	 the	 underlying	 product	
taxonomy;	an	outdated,	poorly	structured,	or	inappropriately	
granular	 taxonomy	 can	 hinder	 the	 accurate	 identification	 of	
substitutable	 or	 complementary	 relationships,	 thereby	
degrading	 the	 precision	 of	 the	 similarity	 weights.	 Secondly,	
although	 the	co-engagement	signals	aim	to	highlight	genuine	
cross-item	 intent,	 they	 can	 sometimes	 be	 noisy.	 Unrelated	
products	 that	happen	to	co-occur	 frequently	 in	user	sessions	
due	to	general	popularity	or	some	seasonal	trends	might	still	
acquire	 non-negligible	 similarity	 scores.	 This	 can	 lead	 to	 the	
misattribution	of	importance	to	some	unrelated	CABB	events,	
introducing	subtle	noise	into	the	learning	process.	Finally,	the	
multi-task	 framework	 involves	 careful	 calibration	of	 the	 loss	
contributions	 from	 the	 CABA	 and	 CABB	 tasks	 using	 the	
hyperparameter	λ.	Determining	an	optimal	λ	typically	requires	
extensive	empirical	 tuning,	and	the	model's	performance	can	
be	 sensitive	 to	 this	 value,	 potentially	 requiring	 re-tuning	 as	
user	behavior	or	product	catalogs	evolve.	

7	 Conclusion	and	Future	Work	
The	 prevalent	 'Click	 A,	 Buy	 B'	 (CABB)	 phenomenon	 in	 e-
commerce	 poses	 a	 significant	 challenge	 to	 traditional	
conversion	attribution	models,	often	leading	to	biased	learning	
and	 suboptimal	 recommendations.	 This	 paper	 introduced	 a	
novel	 approach	 to	 address	 this	 by	 reframing	 conversion	
prediction	as	a	multi-task	learning	problem,	with	distinct	heads	
CABA	 and	 CABB	 conversions.	 A	 key	 contribution	 is	 our	
taxonomy-aware	 collaborative	 filtering	 weighting	 scheme,	
which	aims	to	discern	meaningful	CABB	events	(substitutions	

or	 complements)	 from	 coincidental	 purchases	 by	 leveraging	
category-level	co-engagement	signals.	
Our	 offline	 experiments	 demonstrated	 a	 13%	 reduction	 in	
normalized	entropy	compared	to	a	last-click	baseline,	and	our	
model	outperformed	a	CABA-only	baseline,	underscoring	 the	
value	 of	 carefully	 incorporating	 weighted	 CABB	 signals.	
Crucially,	 online	 A/B	 testing	 on	 a	 large-scale	 e-commerce	
platform	 yielded	 a	 statistically	 significant	 +0.25%	 lift	 in	 our	
primary	 business	 metric	 and	 an	 increase	 in	 the	 CABA	 rate,	
indicating	more	personalized	and	aligned	recommendations.	
We	 acknowledge	 that	 the	 reliance	 on	 taxonomy	 and	 co-
engagement	for	similarity	scoring	can	be	sensitive	to	taxonomy	
quality	and	may	not	perfectly	filter	all	unrelated	CABB	events.	
To	address	 these	 limitations	and	 further	enhance	 the	model,	
future	 work	 could	 explore	 several	 avenues.	 Incorporating	
world	knowledge	 from	Large	Language	Models	 (LLMs)	could	
provide	 a	 more	 robust	 method	 for	 labeling	 CABB	 events	 as	
related	or	unrelated,	potentially	augmenting	or	refining	the	co-
engagement-based	similarity	scores.	Furthermore,	instead	of	a	
fixed	 hyperparameter	 λ,	 an	 attention	 mechanism	 could	 be	
developed	to	dynamically	 learn	 the	optimal	balance	between	
CABA	and	CABB	loss	contributions,	potentially	using	the	final	
ad	 conversion	 event	 as	 a	 supervisory	 signal.	 Exploring	 such	
dynamic	weighting,	extending	the	attribution	window	beyond	
single	 sessions,	 and	 integrating	 richer	 semantic	 product	
features	 remain	 promising	 directions	 for	 advancing	 CABB-
aware	recommendation	systems.	
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